Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenling Chen is active.

Publication


Featured researches published by Wenling Chen.


Neuroscience | 2007

Calcitonin receptor-like receptor and receptor activity modifying protein 1 in the rat dorsal horn: Localization in glutamatergic presynaptic terminals containing opioids and adrenergic α2C receptors

Juan Carlos G. Marvizón; Orlando A. Pérez; Bingbing Song; Wenling Chen; Nigel W. Bunnett; Eileen F. Grady; Andrew J. Todd

Calcitonin gene-related peptide (CGRP) is abundant in the central terminals of primary afferents. However, the function of CGRP receptors in the spinal cord remains unclear. CGRP receptors are heterodimers of calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1). We studied the localization of CRLR and RAMP1 in the rat dorsal horn using well-characterized antibodies against them, which labeled numerous puncta in laminae I-II. In addition, RAMP1 was found in cell bodies, forming patches at the cell surface. The CRLR- and RAMP1-immunoreactive puncta were further characterized using double and triple labeling. Colocalization was quantified in confocal stacks using Imaris software. CRLR did not colocalize with primary afferent markers, indicating that these puncta were not primary afferent terminals. CRLR- and RAMP1-immunoreactive puncta contained synaptophysin and vesicular glutamate transporter-2 (VGLUT2), showing that they were glutamatergic presynaptic terminals. Electron microscopic immunohistochemistry confirmed that CRLR immunoreactivity was present in axonal boutons that were not in synaptic glomeruli. Using tyramide signal amplification for double labeling with the CRLR and RAMP1 antibodies, we found some clear instances of colocalization of CRLR with RAMP1 in puncta, but their overall colocalization was low. In particular, CRLR was absent from RAMP1-containing cells. Many of the puncta stained for CRLR and RAMP1 were labeled by anti-opioid and anti-enkephalin antibodies. CRLR and, to a lesser extent, RAMP1 also colocalized with adrenergic alpha(2C) receptors. Triple label studies demonstrated three-way colocalization of CRLR-VGLUT2-synaptophysin, CRLR-VGLUT2-opioids, and CRLR-opioids-alpha(2C) receptors. In conclusion, CRLR is located in glutamatergic presynaptic terminals in the dorsal horn that contain alpha(2C) adrenergic receptors and opioids. Some of these terminals contain RAMP1, which may form CGRP receptors with CRLR, but in others CRLR may form other receptors, possibly by dimerizing with RAMP2 or RAMP3. These findings suggest that CGRP or adrenomedullin receptors modulate opioid release in the dorsal horn.


European Journal of Neuroscience | 2014

BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals

Wenling Chen; Wendy Walwyn; Helena S. Ennes; Hyeyoung Kim; James A. McRoberts; Juan Carlos G. Marvizón

NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock‐down of NMDA receptors in primary afferents decreased NMDA‐induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin‐related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75NTR), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA‐12 but not by the p75NTR inhibitor TAT‐Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full‐length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr1472 phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch‐clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA‐induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and a Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain.


Neuropharmacology | 2007

Comparing analgesia and μ-opioid receptor internalization produced by intrathecal enkephalin: requirement for peptidase inhibition

Wenling Chen; Bingbing Song; Lijun Lao; Orlando A. Pérez; Woojae Kim; Juan Carlos G. Marvizón

Opioid receptors in the spinal cord produce strong analgesia, but the mechanisms controlling their activation by endogenous opioids remain unclear. We have previously shown in spinal cord slices that peptidases preclude mu-opioid receptor (MOR) internalization by opioids. Our present goals were to investigate whether enkephalin-induced analgesia is also precluded by peptidases, and whether it is mediated by MORs or delta-opioid receptors (DORs). Tail-flick analgesia and MOR internalization were measured in rats injected intrathecally with Leu-enkephalin and peptidase inhibitors. Without peptidase inhibitors, Leu-enkephalin produced neither analgesia nor MOR internalization at doses up to 100 nmol, whereas with peptidase inhibitors it produced analgesia at 0.3 nmol and MOR internalization at 1 nmol. Leu-enkephalin was 10 times more potent to produce analgesia than to produce MOR internalization, suggesting that DORs were involved. Selective MOR or DOR antagonists completely blocked the analgesia elicited by 0.3 nmol Leu-enkephalin (a dose that produced little MOR internalization), indicating that it involved these two receptors, possibly by an additive or synergistic interaction. The selective MOR agonist endomorphin-2 produced analgesia even in the presence of a DOR antagonist, but at doses substantially higher than Leu-enkephalin. Unlike Leu-enkephalin, endomorphin-2 had the same potencies to induce analgesia and MOR internalization. We concluded that low doses of enkephalins produce analgesia by activating both MORs and DORs. Analgesia can also be produced exclusively by MORs at higher agonist doses. Since peptidases prevent the activation of spinal opioid receptors by enkephalins, the coincident release of opioids and endogenous peptidase inhibitors may be required for analgesia.


European Journal of Neuroscience | 2010

Cannabinoid CB1 receptor facilitation of substance P release in the rat spinal cord, measured as neurokinin 1 receptor internalization

Guohua Zhang; Wenling Chen; Lijun Lao; Juan Carlos G. Marvizón

The contribution of CB1 receptors in the spinal cord to cannabinoid analgesia is still unclear. The objective of this study was to investigate the effect of CB1 receptors on substance P release from primary afferent terminals in the spinal cord. Substance P release was measured as neurokinin 1 (NK1) receptor internalization in lamina I neurons. It was induced in spinal cord slices by dorsal root stimulation and in live rats by a noxious stimulus. In spinal cord slices, the CB1 receptor antagonists AM251, AM281 and rimonabant partially but potently inhibited NK1 receptor internalization induced by electrical stimulation of the dorsal root. This was due to an inhibition of substance P release and not of NK1 receptor internalization itself, because AM251 and AM281 did not inhibit NK1 receptor internalization induced by exogenous substance P. The CB1 receptor agonist ACEA increased NK1 receptor internalization evoked by dorsal root stimulation. The effects of AM251 and ACEA cancelled each other. In vivo, AM251 injected intrathecally decreased NK1 receptor internalization in spinal segments L5 and L6 induced by noxious hind paw clamp. Intrathecal AM251 also produced analgesia to radiant heat stimulation of the paw. The inhibition by AM251 of NK1 receptor internalization was reversed by antagonists of μ‐opioid and GABAB receptors. This indicates that CB1 receptors facilitate substance P release by inhibiting the release of GABA and opioids next to primary afferent terminals, producing disinhibition. This results in a pronociceptive effect of CB1 receptors in the spinal cord.


Neuroscience | 2009

Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by μ-opioid receptor internalization

Wenling Chen; Juan Carlos G. Marvizón

The objective of this study was to measure opioid release in the spinal cord during acute and long-term inflammation using mu-opioid receptor (MOR) internalization. In particular, we determined whether opioid release occurs in the segments receiving the noxious signals or in the entire spinal cord, and whether it involves supraspinal signals. Internalization of neurokinin 1 receptors (NK1Rs) was measured to track the intensity of the noxious stimulus. Rats received peptidase inhibitors intrathecally to protect opioids from degradation. Acute inflammation of the hind paw with formalin induced moderate MOR internalization in the L5 segment bilaterally, whereas NK1R internalization occurred only ipsilaterally. MOR internalization was restricted to the lumbar spinal cord, regardless of whether the peptidase inhibitors were injected in a lumbar or thoracic site. Formalin-induced MOR internalization was substantially reduced by isoflurane anesthesia. It was also markedly reduced by a lidocaine block of the cervical-thoracic spinal cord (which did not affect the evoked NK1R internalization) indicating that spinal opioid release is mediated supraspinally. In the absence of peptidase inhibitors, formalin and hind paw clamp induced a small amount of MOR internalization, which was significantly higher than in controls. To study spinal opioid release during chronic inflammation, we injected complete Freunds adjuvant (CFA) in the hind paw and peptidase inhibitors intrathecally. Two days later, no MOR or NK1R internalization was detected. Furthermore, CFA inflammation decreased MOR internalization induced by clamping the inflamed hind paw. These results show that acute inflammation, but not chronic inflammation, induces segmental opioid release in the spinal cord that involves supraspinal signals.


Brain Research | 2007

Inhibition of opioid release in the rat spinal cord by serotonin 5-HT1A receptors

Bingbing Song; Wenling Chen; Juan Carlos G. Marvizón

Neurotransmitter receptors that inhibit the release of opioid peptides in the spinal cord may play an important role in modulating pain. Serotonin is an important neurotransmitter in bulbospinal descending pathways, and 5-HT(1) receptors have been shown to inhibit synaptic transmission. Our goal was to determine whether 5-HT(1A) receptors inhibit opioid release in the spinal cord. Opioid release was evoked from rat spinal cord slices by electrically stimulating one dorsal horn, and measured in situ through the internalization of micro-opioid receptors in dorsal horn neurons. Stimulation with 1000 square pulses at 500 Hz produced internalization in 60% of the mu-opioid receptor neurons in the stimulated dorsal horn, but not in the contralateral one. The selective 5-HT(1A) receptor agonist 8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT) inhibited the evoked mu-opioid receptor internalization by about 50%, with an approximate IC(50) of 50 nM. The effect of 8-OH-DPAT was attributed to inhibition of opioid release and not of the receptor internalization process, because 8-OH-DPAT did not inhibit the internalization induced by incubating the slices with a micro-opioid receptor agonist (endomorphin-2, 100 nM). The selective 5-HT(1A) receptor antagonist WAY100135 (10 microM) blocked the inhibition produced by 1 microM 8-OH-DPAT. These results show that 5-HT(1A) receptors inhibit opioid release in the spinal dorsal horn, probably from a subpopulation of enkephalin-containing presynaptic terminals. Therefore, 5-HT(1A) receptors likely decrease the analgesia produced by endogenously released opioids.


Neuroscience | 2014

Inflammation enhances Y1 receptor signaling, neuropeptide Y-mediated inhibition of hyperalgesia, and substance P release from primary afferent neurons.

Bradley K. Taylor; Weisi Fu; Karen E. Kuphal; Carl-Olav Stiller; Michelle K. Winter; Wenling Chen; Gregory Corder; Janice H. Urban; Kenneth E. McCarson; Juan Carlos G. Marvizón

Neuropeptide Y (NPY) is present in the superficial laminae of the dorsal horn and inhibits spinal nociceptive processing, but the mechanisms underlying its anti-hyperalgesic actions are unclear. We hypothesized that NPY acts at neuropeptide Y1 receptors in the dorsal horn to decrease nociception by inhibiting substance P (SP) release, and that these effects are enhanced by inflammation. To evaluate SP release, we used microdialysis and neurokinin 1 receptor (NK1R) internalization in rat. NPY decreased capsaicin-evoked SP-like immunoreactivity in the microdialysate of the dorsal horn. NPY also decreased non-noxious stimulus (paw brush)-evoked NK1R internalization (as well as mechanical hyperalgesia and mechanical and cold allodynia) after intraplantar injection of carrageenan. Similarly, in rat spinal cord slices with dorsal root attached, [Leu(31), Pro(34)]-NPY inhibited dorsal root stimulus-evoked NK1R internalization. In rat dorsal root ganglion neurons, Y1 receptors colocalized extensively with calcitonin gene-related peptide (CGRP). In dorsal horn neurons, Y1 receptors were extensively expressed and this may have masked the detection of terminal co-localization with CGRP or SP. To determine whether the pain inhibitory actions of Y1 receptors are enhanced by inflammation, we administered [Leu(31), Pro(34)]-NPY after intraplantar injection of complete Freunds adjuvant (CFA) in rat. We found that [Leu(31), Pro(34)]-NPY reduced paw clamp-induced NK1R internalization in CFA rats but not uninjured controls. To determine the contribution of increased Y1 receptor-G protein coupling, we measured [(35)S]GTPγS binding simulated by [Leu(31), Pro(34)]-NPY in mouse dorsal horn. CFA inflammation increased the affinity of Y1 receptor G-protein coupling. We conclude that Y1 receptors contribute to the anti-hyperalgesic effects of NPY by mediating the inhibition of SP release, and that Y1 receptor signaling in the dorsal horn is enhanced during inflammatory nociception.


Neuroscience | 2010

NMDA receptors in primary afferents require phosphorylation by Src family kinases to induce substance P release in the rat spinal cord.

Wenling Chen; Guohua Zhang; Juan Carlos G. Marvizón

The function of N-methyl-d-aspartate (NMDA) receptors in primary afferents remains controversial, in particular regarding their ability to evoke substance P release in the spinal cord. The objective of this study was, first, to confirm that substance P release evoked by NMDA is mediated by NMDA receptors in primary afferent terminals. Second, we investigated whether these NMDA receptors are inactivated in some conditions, which would explain why their effect on substance P release was not observed in some studies. Substance P release was induced in spinal cord slices and measured as neurokinin 1 (NK1) receptor internalization in lamina I neurons. NMDA (combined with d-serine) induced NK1 receptor internalization with a half of the effective concentration (EC50) of 258 nM. NMDA-induced NK1 receptor internalization was abolished by the NK1 receptor antagonist L-703,606, confirming that is was caused by substance P release, by NMDA receptor antagonists (MK1801 and ifenprodil), showing that it was mediated by NMDA receptors containing the NR2B subunit, and by preincubating the slices with capsaicin, showing that the substance P release was from primary afferents. However, it was not affected by lidocaine and omega-conotoxin MVIIA, which block Na+ channels and voltage-dependent Ca2+ channels, respectively. Therefore, NMDA-induced substance P release does not require firing of primary afferents or the opening of Ca2+ channels, which is consistent with the idea that NMDA receptors induce substance P directly by letting Ca2+ into primary afferent terminals. Importantly, NMDA-induced substance P release was eliminated by preincubating the slices for 1 h with the Src family kinase inhibitors PP1 and dasatinib, and was substantially increased by the protein tyrosine phosphatase inhibitor BVT948. In contrast, PP1 did not affect NK1 receptor internalization induced by capsaicin. These results show that tyrosine-phosphorylation of these NMDA receptors is regulated by the opposite actions of Src family kinases and protein tyrosine phosphatases, and is required to induce substance P release.


European Journal of Neuroscience | 2010

Src family kinases mediate the inhibition of substance P release in the rat spinal cord by μ‐opioid receptors and GABAB receptors, but not α2 adrenergic receptors

Guohua Zhang; Wenling Chen; Juan Carlos G. Marvizón

GABAB, μ‐opioid and adrenergic α2 receptors inhibit substance P release from primary afferent terminals in the dorsal horn. Studies in cell expression systems suggest that μ‐opioid and GABAB receptors inhibit transmitter release from primary afferents by activating Src family kinases (SFKs), which then phosphorylate and inhibit voltage‐gated calcium channels. This study investigated whether SFKs mediate the inhibition of substance P release by these three receptors. Substance P release was measured as neurokinin 1 receptor (NK1R) internalization in spinal cord slices and in vivo. In slices, NK1R internalization induced by high‐frequency dorsal root stimulation was inhibited by the μ‐opioid agonist DAMGO and the GABAB agonist baclofen. This inhibition was reversed by the SFK inhibitor PP1. NK1R internalization induced by low‐frequency stimulation was also inhibited by DAMGO, but PP1 did not reverse this effect. In vivo, NK1R internalization induced by noxious mechanical stimulation of the hind paw was inhibited by intrathecal DAMGO and baclofen. This inhibition was reversed by intrathecal PP1, but not by the inactive PP1 analog PP3. PP1 produced no effect by itself. The α2 adrenergic agonists medetomidine and guanfacine produced a small but statistically significant inhibition of NK1R internalization induced by low‐frequency dorsal root stimulation. PP1 did not reverse the inhibition by guanfacine. These results show that SFKs mediate the inhibition of substance P release by μ‐opioid and GABAB receptors, but not by α2 receptors, which is probably mediated by the binding of G protein βγ subunits to calcium channels.


Neuropharmacology | 2008

Inhibition of opioid release in the rat spinal cord by α2C adrenergic receptors

Wenling Chen; Bingbing Song; Juan Carlos G. Marvizón

Neurotransmitter receptors that control the release of opioid peptides in the spinal cord may play an important role in pain modulation. Norepinephrine, released by a descending pathway originating in the brainstem, is a powerful inducer of analgesia in the spinal cord. Adrenergic alpha2C receptors are present in opioid-containing terminals in the dorsal horn, where they could modulate opioid release. The goal of this study was to investigate this possibility. Opioid release was evoked from rat spinal cord slices by incubating them with the sodium channel opener veratridine in the presence of peptidase inhibitors (actinonin, captopril and thiorphan), and was measured in situ through the internalization of mu-opioid receptors in dorsal horn neurons. Veratridine produced internalization in 70% of these neurons. The alpha2 receptor agonists clonidine, guanfacine, medetomidine and UK-14304 inhibited the evoked mu-opioid receptor internalization with IC50s of 1.7 microM, 248 nM, 0.3 nM and 22 nM, respectively. However, inhibition by medetomidine was only partial, and inhibition by UK-14304 reversed itself at concentrations higher than 50 nM. None of these agonists inhibited mu-opioid receptor internalization produced by endomorphin-2, showing that they inhibited opioid release and not the internalization itself. The inhibitions produced by clonidine, guanfacine or UK-14304 were completely reversed by the selective alpha2C antagonist JP-1203. In contrast, inhibition by guanfacine was not prevented by the alpha2A antagonist BRL-44408. These results show that alpha2C receptors inhibit the release of opioids in the dorsal horn. This action may serve to shut down the opioid system when the adrenergic system is active.

Collaboration


Dive into the Wenling Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bingbing Song

University of California

View shared research outputs
Top Co-Authors

Avatar

Guohua Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lijun Lao

University of California

View shared research outputs
Top Co-Authors

Avatar

Wendy Walwyn

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ani Minasyan

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge