Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenlong Song is active.

Publication


Featured researches published by Wenlong Song.


Applied Physics Express | 2010

Two-Dimensional Open Microfluidic Devices by Tuning the Wettability on Patterned Superhydrophobic Polymeric Surface

Nuno M. Oliveira; Ana I. Neto; Wenlong Song; João F. Mano

We present a simple and economical method to produce a potential open microfluidic polymeric device. Biomimetic superhydrophobic surfaces were prepared on polystyrene using a phase separation methodology. Patterned two-dimensional channels were imprinted on the superhydrophobic substrates by exposing the surface to plasma or UV–ozone radiation. The wettability of the channels could be precisely controlled between the superhydrophobic and superhydrophilic states by changing the exposure time. The ability of superhydrophilic paths to drive liquid flows in a horizontal position was found to be significantly higher than for the case of hydrophilic paths patterned onto smooth surfaces.


Soft Matter | 2011

High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates

Ana I. Neto; Catarina A. Custódio; Wenlong Song; João F. Mano

We propose a new low cost platform for high-throughput analysis that permits screening the biological performance of independent combinations of biomaterials, cells and culture media. Patterned superhydrophobic flat substrates with controlled wettable spots are used to produce microarray chips for accelerated multiplexing evaluation.


Pharmaceutical Research | 2011

Synthesis of temperature-responsive Dextran-MA/PNIPAAm particles for controlled drug delivery using superhydrophobic surfaces

Ana Lima; Wenlong Song; Barbara Blanco-Fernandez; Carmen Alvarez-Lorenzo; João F. Mano

ABSTRACTPurposeTo implement a bioinspired methodology using superhydrophobic surfaces suitable for producing smart hydrogel beads in which the bioactive substance is introduced in the particles during their formation.Methods Several superhydrophobic surfaces, including polystyrene, aluminum and copper, were prepared. Polymeric solutions composed by photo-crosslinked dextran-methacrylated and thermal responsive poly(N-isopropylacrylamide) mixed with a protein (insulin or albumin) were dropped on the superhydrophobic surfaces, and the obtained millimetric spheres were hardened in a dry environment under UV light.ResultsSpherical and non-sticky hydrogels particles were formed in few minutes on the superhydrophobic surfaces. The proteins included in the liquid formulation were homogeneously distributed in the particle network. The particles exhibited temperature-sensitive swelling, porosity and protein release rate, with the responsiveness tunable by the dextran-MA/PNIPAAm weight ratio.ConclusionsThe proposed method permitted the preparation of smart hydrogel particles in one step with almost 100% encapsulation yield. The temperature-sensitive release profiles suggest that the obtained spherical-shaped biomaterials are suitable as protein carriers. These stimuli-responsive beads could have potential to be used in pharmaceutical or other biomedical applications, including tissue engineering and regenerative medicine.


Soft Matter | 2010

Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates

Wenlong Song; Ana Lima; João F. Mano

Inspired by the rolling of water drops over the lotus leaf, we propose a new biomimetic fabrication process for hydrogel and polymeric spheres over a superhydrophobic substrate. This method may be potentially applied in tissue engineering or as support for cell expansion, cell encapsulation and as spherical structures for controlled release of molecule.


Soft Matter | 2013

Interactions between cells or proteins and surfaces exhibiting extreme wettabilities

Wenlong Song; João F. Mano

Regulation of protein adsorption and cell adhesion on surfaces is a key aspect in the field of biomedicine and tissue engineering. Beside the general studies on hydrophilic/hydrophobic surfaces, there are both fundamental and practical interests to extend the investigation of the interaction between proteins or cells and surfaces to the two extreme wettability ranges, namely superhydrophilicity and superhydrophobicity. This review gave an overview of recent studies on proteins or cells action on these two special wettability ranges. The first part will focus on the interaction between proteins and superhydrophilic/superhydrophobic surfaces. The second part will focus on cells adhesion on these extreme wettable surfaces. Surfaces can be patterned to control in space the wettability within extreme values. As an application of such substrates, flat chips for high-throughput screening are also addressed to offer new insight on the design of a new type of bioanalysis supports.


Small | 2013

Combinatorial on-chip study of miniaturized 3D porous scaffolds using a patterned superhydrophobic platform

Mariana B. Oliveira; Christiane L. Salgado; Wenlong Song; João F. Mano

One of the main challenges in tissue engineering (TE) is to obtain optimized products, combining biomaterials, cells and soluble factors able to stimulate tissue regeneration. Multiple combinations may be considered by changing the conditions among these three factors. The unpredictable response of each combination requires time-consuming tests. High-throughput methodologies have been proposed to master such complex analyses in TE. Usually, these tests are performed using cells cultured into 2D biomaterials or by dispensing arrays of cell-loaded hydrogels. For the first time an on-chip combinatorial study of 3D miniaturized porous scaffolds is proposed, using a patterned bioinspired superhydrophobic platform. Arrays of biomaterials are dispensed and processed in situ as porous scaffolds with distinct composition, surface characteristics, porosity/pore size, and mechanical properties. On-chip porosity, pore size, and mechanical properties of scaffolds based on chitosan and alginate are assessed by adapting microcomputed tomography equipment and a dynamic mechanical analyzer, as well as cell response after 24 hours. The interactions between cell types of two distinct origins-osteoblast-like and fibroblasts-and the scaffolds modified with fibronectin are studied and validated by comparison with conventional destructive methods (dsDNA quantification and MTS tests). Physical and biological on-chip analyses are coherent with the conventional measures, and conclusions about the most favorable conditions for each cell type are taken.


AMB Express | 2011

Superhydrophobic poly(L-lactic acid) surface as potential bacterial colonization substrate.

Cláudia Sousa; Diana Alexandra Ferreira Rodrigues; Rosário Oliveira; Wenlong Song; João F. Mano; Joana Azeredo

Hydrophobicity is a very important surface property and there is a growing interest in the production and characterization of superhydrophobic surfaces. Accordingly, it was recently shown how to obtain a superhydrophobic surface using a simple and cost-effective method on a polymer named poly(L-lactic acid) (PLLA). To evaluate the ability of such material as a substrate for bacterial colonization, this work assessed the capability of different bacteria to colonize a biomimetic rough superhydrophobic (SH) PLLA surface and also a smooth hydrophobic (H) one. The interaction between these surfaces and bacteria with different morphologies and cell walls was studied using one strain of Staphylococcus aureus and one of Pseudomonas aeruginosa. Results showed that both bacterial strains colonized the surfaces tested, although significantly higher numbers of S. aureus cells were found on SH surfaces comparing to H ones. Moreover, scanning electron microscopy images showed an extracellular matrix produced by P. aeruginosa on SH PLLA surfaces, indicating that this bacterium is able to form a biofilm on such substratum. Bacterial removal through lotus leaf effect was also tested, being more efficient on H coupons than on SH PLLA ones. Overall, the results showed that SH PLLA surfaces can be used as a substrate for bacterial colonization and, thus, have an exceptional potential for biotechnology applications.


Soft Matter | 2011

Development of an injectable system based on elastin-like recombinamer particles for tissue engineering applications

Mariana B. Oliveira; Wenlong Song; Laura Martín; Sara M. Oliveira; Sofia G. Caridade; Matilde Alonso; José Carlos Rodríguez-Cabello; João F. Mano

An elastin-like recombinamer (ELR) containing the RGD cell adhesion domain was used to fabricate microparticles by an innovative and affordable process based on the use of superhydrophobic surfaces. Two microparticles types with different crosslinking extents were prepared. The biological response was tested using an osteoblast-like cell line (SaOs-2) performing proliferation and alkaline phosphatase (ALP) quantification tests, as well as assessing cytotoxicity, morphology and cell distribution on the particles. The main goal of the work was the assessment of the in vitro formation of cell-induced microparticle aggregates that could provide indications for the possible formation of an in situ-forming scaffold upon implantation. ELR microparticles have been successfully obtained by deposition of a polymeric solution on bioinspired polystyrene superhydrophobic surfaces and two different crosslinking extents were achieved by controlling the time of exposure to the crosslinker. The crosslinking extent affected swelling behavior and the dynamic mechanical properties of the particles. SaOs-2 morphology, ALP expression, spatial distribution and ability to bind the microparticles together were dependent on the physicochemical properties of the microparticles: the more crosslinked condition was the most favorable for cell proliferation and to form a cell-induced aggregation scaffold, making these particles suitable to be applied in bone tissue engineering.


Biomedical Materials | 2013

Bioinspired methodology for preparing magnetic responsive chitosan beads to be integrated in a tubular bioreactor for biomedical applications

Wenlong Song; Mariana B. Oliveira; Praveen Sher; Sara Gil; J. Miguel Nóbrega; João F. Mano

Magnetic responsive chitosan beads were prepared using a methodology inspired by the rolling of water droplets over lotus leaves. Liquid precursors containing chitosan and magnetic microparticles were dispensed in the form of spherical droplets and crosslinked with genipin over synthetic superhydrophobic surfaces. Scanning electronic microscopy, histology and micro-computed tomography were employed to characterize the structure of the prepared composite beads and the inner distribution of the magnetic particles. Cellular metabolic activity tests showed that fibroblasts-like (L929 cell line) can adhere and proliferate on the prepared chitosan beads. We hypothesize that such spherical biomaterials could be integrated in a new concept of tubular bioreactor. The magnetic beads can be immobilized by an external magnetic field at specific positions and may be transported along the bioreactor by the drag of the culture medium flow. The system behavior was also studied through numerical modeling, which allowed to identify the relative importance of the main parameters, and to conclude that the distance between carrier beads plays a major role on their interaction with the culture medium and, consequently, on the overall system performance. In an up-scaled version of this bioreactor, the herein presented system may comprise different chambers in serial or parallel configurations. This constitutes a simple way of preparing magnetic responsive beads combined with a new design of bioreactor, which may find application in biomedicine and biotechnology, including in cell expansion for tissue engineering or for the production of therapeutic proteins to be used in cell therapies.


Scientific Reports | 2018

Bioactive Hydrogel Marbles

Álvaro J. Leite; Nuno M. Oliveira; Wenlong Song; João F. Mano

Liquid marbles represented a significant advance in the manipulation of fluids as they used particle films to confine liquid drops, creating a robust and durable soft solid. We exploit this technology to engineering a bioactive hydrogel marble (BHM). Specifically, pristine bioactive glass nanoparticles were chemically tuned to produce biocompatible hydrophobic bioactive glass nanoparticles (H-BGNPs) that shielded a gelatin-based bead. The designed BHM shell promoted the growth of a bone-like apatite layer upon immersion in a physiological environment. The fabrication process allowed the efficient incorporation of drugs and cells into the engineered structure. The BHM provided a simultaneously controlled release of distinct encapsulated therapeutic model molecules. Moreover, the BHM sustained cell encapsulation in a 3D environment as demonstrated by an excellent in vitro stability and cytocompatibility. The engineered structures also showed potential to regulate a pre-osteoblastic cell line into osteogenic commitment. Overall, these hierarchical nanostructured and functional marbles revealed a high potential for future applications in bone tissue engineering.

Collaboration


Dive into the Wenlong Song's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana D. Veiga

Polytechnic University of Valencia

View shared research outputs
Researchain Logo
Decentralizing Knowledge