Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenning Wang is active.

Publication


Featured researches published by Wenning Wang.


The EMBO Journal | 2011

Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules

Jinwei Zhu; Yuan Shang; Caihao Xia; Wenning Wang; Wenyu Wen; Mingjie Zhang

Membrane‐associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tissue developments, cell–cell communications, cell polarity control, and cellular signal transductions. Despite extensive studies over the past two decades, the functions of the signature guanylate kinase domain (GK) of MAGUKs are poorly understood. Here we show that the GK domain of DLG1/SAP97 binds to asymmetric cell division regulatory protein LGN in a phosphorylation‐dependent manner. The structure of the DLG1 SH3‐GK tandem in complex with a phospho‐LGN peptide reveals that the GMP‐binding site of GK has evolved into a specific pSer/pThr‐binding pocket. Residues both N‐ and C‐terminal to the pSer are also critical for the specific binding of the phospho‐LGN peptide to GK. We further demonstrate that the previously reported GK domain‐mediated interactions of DLGs with other targets, such as GKAP/DLGAP1/SAPAP1 and SPAR, are also phosphorylation dependent. Finally, we provide evidence that other MAGUK GKs also function as phospho‐peptide‐binding modules. The discovery of the phosphorylation‐dependent MAGUK GK/target interactions indicates that MAGUK scaffold‐mediated signalling complex organizations are dynamically regulated.


PLOS ONE | 2012

The Conformational Transition Pathways of ATP-Binding Cassette Transporter BtuCD Revealed by Targeted Molecular Dynamics Simulation

Jingwei Weng; Kangnian Fan; Wenning Wang

BtuCD is a member of the ATP-binding cassette transporters in Escherichia coli that imports vitamin B12 into the cell by utilizing the energy of ATP hydrolysis. Crystal structures of BtuCD and its homologous protein HI1470/1 in various conformational states support the “alternating access” mechanism which proposes the conformational transitions of the substrate translocation pathway at transmembrane domain (TMD) between the outward-facing and inward-facing states. The conformational transition at TMD is assumed to couple with the movement of the cytoplasmic nucleotide-binding domains (NBDs) driven by ATP hydrolysis/binding. In this study, we performed targeted molecular dynamics (MD) simulations to explore the atomic details of the conformational transitions of BtuCD importer. The outward-facing to inward-facing (O→I) transition was found to be initiated by the conformational movement of NBDs. The subsequent reorientation of the substrate translocation pathway at TMD began with the closing of the periplasmic gate, followed by the opening of the cytoplamic gate in the last stage of the conformational transition due to the extensive hydrophobic interactions at this region, consistent with the functional requirement of unidirectional transport of the substrates. The reverse inward-facing to outward-facing (I→O) transition was found to exhibit intrinsic diversity of the conformational transition pathways and significant structural asymmetry, suggesting that the asymmetric crystal structure of BtuCD-F is an intermediate state in this process.


ACS Applied Materials & Interfaces | 2016

Phosphorylated Peptide Functionalization of Lanthanide Upconversion Nanoparticles for Tuning Nanomaterial–Cell Interactions

Chi Yao; Caiyi Wei; Zhi Huang; Yiqing Lu; Ahmed Mohamed El-Toni; Dianwen Ju; Xiangmin Zhang; Wenning Wang; Fan Zhang

Peptide modification of nanoparticles with high efficiency is critical in determining the properties and bioapplications of nanoparticles, but the methodology remains a challenging task. Here, by using the phosphorylated linear and cyclic peptide with the arginine-glycine-aspartic acid (RGD) targeting motifs as typical examples, the peptides binding efficiency for the inorganic metal compound nanoparticles was increased significantly after the phosphorylation treatment, and the modification allowed for improving the selectivity and signal-to-noise ratio for cancer targeting and reduced the toxicity derived from nonspecific interactions of nanoparticles with cells owing to the higher amount of phosphopeptide binding. In addition, molecular dynamics (MD) simulations of various peptides on inorganic metal compound surfaces revealed that the peptide adsorption on the surface is mainly driven by electrostatic interactions between phosphate oxygen and the polarized interfacial water layer, consistent with the experimental observation of the strong binding propensity of phosphorylated peptides. Significantly, with the RGD phosphopeptide surface modification, these nanoparticles provide a versatile tool for tuning material-cell interactions to achieve the desired level of autophagy and may prove useful for various diagnostic and therapeutic applications.


PLOS ONE | 2011

Detailed regulatory mechanism of the interaction between ZO-1 PDZ2 and connexin43 revealed by MD simulations.

Fei Xiao; Jingwei Weng; Kangnian Fan; Wenning Wang

The gap junction protein connexin43 (Cx43) binds to the second PDZ domain of Zonula occludens-1 (ZO-1) through its C-terminal tail, mediating the regulation of gap junction plaque size and dynamics. Biochemical study demonstrated that the very C-terminal 12 residues of Cx43 are necessary and sufficient for ZO-1 PDZ2 binding and phosphorylation at residues Ser (-9) and Ser (-10) of the peptide can disrupt the association. However, only a crystal structure of ZO-1 PDZ2 in complex with a shorter 9 aa peptide of connexin43 was solved experimentally. Here, the interactions between ZO-1 PDZ2 and the short, long and phosphorylated Cx43 peptides were studied using molecular dynamics (MD) simulations and free energy calculation. The short peptide bound to PDZ2 exhibits large structural variations, while the extension of three upstream residues stabilizes the peptide conformation and enhanced the interaction. Phosphorylation at Ser(-9) significantly weakens the binding and results in conformational flexibility of the peptide. Glu210 of ZO-1 PDZ2 was found to be a key regulatory point in Cx43 binding and phosphorylation induced dissociation.


Journal of Physical Chemistry B | 2016

Insights into the Inhibitory Mechanism of D13-9001 to the Multidrug Transporter AcrB through Molecular Dynamics Simulations.

Zhicheng Zuo; Jingwei Weng; Wenning Wang

The resistance-nodulation-cell division transporter AcrB is responsible for energy transduction and substrate recognition in the tripartite AcrAB-TolC efflux system in Escherichia coli. Despite a broad substrate specificity, only a few compounds have been cocrystallized with AcrB inside the distal binding pocket (DBP), including doxorubicin (DOX) and D13-9001. D13-9001 is a promising efflux pump inhibitor that potentiates the efficacy of a wide variety of antibiotics. To understand its inhibition effect under the framework of functional rotating mechanism, we performed targeted and steered molecular dynamics simulations to compare the binding and extrusion processes of this inhibitor and the substrate DOX in AcrB. The results demonstrate that, with respect to DOX, the interaction of D13-9001 with the hydrophobic trap results in delayed disassociation from the DBP. Notably, the detachment of D13-9001 is tightly correlated with the side-chain reorientation of Phe628 and large-scale displacement of Tyr327. Furthermore, the inhibitor induces much more significant conformational changes at the exit gate than DOX does, thereby causing higher energy cost for extrusion and contributing to the inhibitory effect in addition to the tight binding at DBP.


Advances in Experimental Medicine and Biology | 2014

Molecular Dynamics Simulation of Membrane Proteins

Jingwei Weng; Wenning Wang

Membrane proteins play crucial roles in a range of biological processes. High resolution structures provide insights into the functional mechanisms of membrane proteins, but detailed biophysical characterization of membrane proteins is difficult. Complementary to experimental techniques, molecular dynamics simulations is a powerful tool in providing more complete description of the dynamics and energetics of membrane proteins with high spatial-temporal resolution. In this chapter, we provide a survey of the current methods and technique issues for setting up and running simulations of membrane proteins. The recent progress in applying simulations to understanding various biophysical properties of membrane proteins is outlined.


Proteins | 2011

Elastic network model‐based normal mode analysis reveals the conformational couplings in the tripartite AcrAB‐TolC multidrug efflux complex

Beibei Wang; Jingwei Weng; Kangnian Fan; Wenning Wang

The AcrAB‐TolC drug efflux system, energized by proton movement down the transmembrane electrochemical gradient, is responsible for the resistance of the organism to a wide range of drugs. Experimental data suggest functional roles of each part of the assembly, but the detailed working mechanism of this machinery remains elusive. We used elastic network‐based normal mode analysis (NMA) to explore the conformational dynamics of the AcrAB‐TolC complex. The intrinsic flexibilities of the pore domain in AcrB monomer conform to the previously proposed three‐step functionally rotating mechanism for asymmetric AcrB trimer. Conformational couplings across monomers in the AcrB trimer were observed, and the coupling between the transmembrane domain and the other parts of AcrB are strengthened through trimeric assembly. In the tripartite AcrAB‐TolC assembly obtained through molecular docking, concerted motions were observed not only at the direct contact interfaces between various components but also between distant parts of the whole complex. The presence of AcrA was shown to significantly strengthen the motional couplings between AcrB and TolC. Overall, NMA revealed an allosteric network in the AcAB‐TolC efflux system, which provides hints to our understanding of its detailed working mechanism. Proteins 2011;


Scientific Reports | 2015

Stepwise substrate translocation mechanism revealed by free energy calculations of doxorubicin in the multidrug transporter AcrB.

Zhicheng Zuo; Bingxing Wang; Jingwei Weng; Wenning Wang

AcrB is the inner membrane transporter of the tripartite multidrug efflux pump AcrAB-TolC in E. coli, which poses a major obstacle to the treatment of bacterial infections. X-ray structures have identified two types of substrate-binding pockets in the porter domains of AcrB trimer: the proximal binding pocket (PBP) and the distal binding pocket (DBP), and suggest a functional rotating mechanism in which each protomer cycles consecutively through three distinct conformational states (access, binding and extrusion). However, the details of substrate binding and translocation between the binding pockets remain elusive. In this work, we performed atomic simulations to obtain the free energy profile of the translocation of an antibiotic drug doxorubicin (DOX) inside AcrB. Our simulation indicates that DOX binds at the PBP and DBP with comparable affinities in the binding state protomer, and overcomes a 3u2009kcal/mol energy barrier to transit between them. Obvious conformational changes including closing of the PC1/PC2 cleft and shrinking of the DBP were observed upon DOX binding in the PBP, resulting in an intermediate state between the access and binding states. Taken together, the simulation results reveal a detailed stepwise substrate binding and translocation process in the framework of functional rotating mechanism.


Journal of Molecular Biology | 2013

Structural and Biochemical Characterization of the Interaction between LGN and Frmpd1

Zhu Pan; Yuan Shang; Min Jia; Lu Zhang; Caihao Xia; Mingjie Zhang; Wenning Wang; Wenyu Wen

The tetratricopeptide repeat (TPR) motif-containing protein LGN binds multiple targets and regulates their subcellular localizations and functions during both asymmetric and symmetric cell divisions. Here, we characterized the interaction between LGN-TPR motifs and FERM and PDZ domain containing 1 (Frmpd1) and reported the crystal structure of the complex at 2.4Å resolution. A highly conserved fragment at the center of Frmpd1 of ~20 residues was found to be necessary and sufficient to bind to LGN-TPR. This Frmpd1 fragment forms an extended structure and runs along the concave channel of the TPR superhelix in an antiparallel manner in the complex. Structural comparisons and biochemical studies of LGN/Frmpd1 and other known LGN/target interactions demonstrate that the LGN-TPR motifs are versatile and capable of recognizing multiple targets via diverse binding modes. Nevertheless, a conserved E/QxEx4-5E/D/Qx1-2K/R motif in LGN/Pins (partner of inscuteable) TPR binding proteins has been identified.


Frontiers in Microbiology | 2015

Substrate binding accelerates the conformational transitions and substrate dissociation in multidrug efflux transporter AcrB

Beibei Wang; Jingwei Weng; Wenning Wang

The tripartite efflux pump assembly AcrAB-TolC is the major multidrug resistance transporter in E. coli. The inner membrane transporter AcrB is a homotrimer, energized by the proton movement down the transmembrane electrochemical gradient. The asymmetric crystal structures of AcrB with three monomers in distinct conformational states [access (A), binding (B) and extrusion (E)] support a functional rotating mechanism, in which each monomer of AcrB cycles among the three states in a concerted way. However, the relationship between the conformational changes during functional rotation and drug translocation has not been totally understood. Here, we explored the conformational changes of the AcrB homotrimer during the ABE to BEA transition in different substrate-binding states using targeted MD simulations. It was found that the dissociation of substrate from the distal binding pocket of B monomer is closely related to the concerted conformational changes in the translocation pathway, especially the side chain reorientation of Phe628 and Tyr327. A second substrate binding at the proximal binding pocket of A monomer evidently accelerates the conformational transitions as well as substrate dissociation in B monomer. The acceleration effect of the multi-substrate binding mode provides a molecular explanation for the positive cooperativity observed in the kinetic studies of substrate efflux and deepens our understanding of the functional rotating mechanism of AcrB.

Collaboration


Dive into the Wenning Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Gao

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge