Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenpei Fan is active.

Publication


Featured researches published by Wenpei Fan.


Journal of the American Chemical Society | 2013

A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy.

Qingfeng Xiao; Xiangpeng Zheng; Wenbo Bu; Weiqiang Ge; Shengjian Zhang; Feng Chen; Huaiyong Xing; Qingguo Ren; Wenpei Fan; Kuaile Zhao; Yanqing Hua; Jianlin Shi

To integrate photothermal ablation (PTA) with radiotherapy (RT) for improved cancer therapy, we constructed a novel multifunctional core/satellite nanotheranostic (CSNT) by decorating ultrasmall CuS nanoparticles onto the surface of a silica-coated rare earth upconversion nanoparticle. These CSNTs could not only convert near-infrared light into heat for effective thermal ablation but also induce a highly localized radiation dose boost to trigger substantially enhanced radiation damage both in vitro and in vivo. With the synergistic interaction between PTA and the enhanced RT, the tumor could be eradicated without visible recurrence in 120 days. Notably, hematological analysis and histological examination unambiguously revealed their negligible toxicity to the mice within a month. Moreover, the novel CSNTs facilitate excellent upconversion luminescence/magnetic resonance/computer tomography trimodal imagings. This multifunctional nanocomposite is believed to be capable of playing a vital role in future oncotherapy by the synergistic effects between enhanced RT and PTA under the potential trimodal imaging guidance.


ACS Nano | 2014

Dual-targeting upconversion nanoprobes across the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma

Dalong Ni; Jiawen Zhang; Wenbo Bu; Huaiyong Xing; Fang Han; Qingfeng Xiao; Zhenwei Yao; Feng Chen; Qianjun He; Jianan Liu; Shengjian Zhang; Wenpei Fan; Liangping Zhou; Weijun Peng; Jianlin Shi

Surgical resection, one of the main clinical treatments of intracranial glioblastoma, bears the potential risk of incomplete excision due to the inherent infiltrative character of the glioblastoma. To maximize the accuracy of surgical resection, the magnetic resonance (MR) and fluorescence imaging are widely used for the tumor preoperative diagnosis and intraoperative positioning. However, present commercial MR contrast agents and fluorescent dyes can only function for single mode of imaging and are subject to poor blood-brain barrier (BBB) permeability and nontargeting-specificity, resulting in the apparent risks of inefficient diagnosis and resection of glioblastoma. Considering the unique MR/upconversion luminescence (UCL) bimodal imaging feature of upconversion nanoparticles (UCNPs), herein, we have developed a dual-targeting nanoprobe (ANG/PEG-UCNPs) to cross the BBB, target the glioblastoma, and then function as a simultaneous MR/NIR-to-NIR UCL bimodal imaging agent, which showed a much enhanced imaging performance in comparison with the clinically used single MRI contrast (Gd-DTPA) and fluorescent dye (5-ALA). Moreover, their biocompatibility, especially to brains, was systematically assessed by the histological/hematological examination, indicating a negligible in vivo toxicity. As a proof-of-concept, the ANG/PEG-UCNPs hold the great potential in MR diagnosis and fluorescence positioning of glioblastoma for the efficient tumor surgery.


Journal of the American Chemical Society | 2013

Rattle-Structured Multifunctional Nanotheranostics for Synergetic Chemo-/Radiotherapy and Simultaneous Magnetic/Luminescent Dual-Mode Imaging

Wenpei Fan; Bo Shen; Wenbo Bu; Feng Chen; Kuaile Zhao; Shengjian Zhang; Liangping Zhou; Weijun Peng; Qingfeng Xiao; Huaiyong Xing; Jianan Liu; Dalong Ni; Qianjun He; Jianlin Shi

Most hypoxic tumors are insensitive to radiation, which is a major obstacle in the development of conventional radiotherapy for tumor treatment. Some drugs, such as cisplatin (CDDP), have been extensively used both as an anticancer drug and clinically as a radiosensitizer to enhance radiotherapy. Herein, we develop rattle-structured multifunctional up-conversion core/porous silica shell nanotheranostics (UCSNs) for delivering CDDP to tumors for synergetic chemo-/radiotherapy by CDDP radiosensitization and magnetic/luminescent dual-mode imaging. UCSNs had a dynamic light scattering diameter of 79.1 nm and excellent water dispersity and stability. In vitro studies showed that CDDP loaded in UCSNs (UCSNs-CDDP) was more effective than free CDDP as a radiosensitizer. After injection, UCSNs-CDDP also demonstrated unambiguously enhanced radiotherapy efficacy in vivo. Our report aims at presenting a novel strategy in biomedical nanotechnology that allows simultaneous dual-mode imaging and localized therapy via synergetic chemo-/radiotherapy, which may achieve optimized therapeutic efficacy in cancer treatment.


Advanced Materials | 2015

Intelligent MnO2 Nanosheets Anchored with Upconversion Nanoprobes for Concurrent pH-/H2O2-Responsive UCL Imaging and Oxygen-Elevated Synergetic Therapy.

Wenpei Fan; Wenbo Bu; Bo Shen; Qianjun He; Zhaowen Cui; Yanyan Liu; Xiangpeng Zheng; Kuaile Zhao; Jianlin Shi

Dr. W. Fan, Prof. W. Bu, Dr. Q. He, Dr. Z. Cui, Dr. Y. Liu, Prof. J. Shi State Key Laboratory of High Performance Ceramics and Superfi ne Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 , P. R. China E-mail: [email protected]; [email protected] Prof. W. Bu Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites Nanjing Tech University Nanjing 210009 , P. R. China Dr. B. Shen Institute of Radiation Medicine Fudan University Shanghai 200032 , P. R. China Dr. X. Zheng Department of Radiation Oncology Shanghai Huadong Hospital Fudan University Shanghai 200040 , P. R. China Dr. K. Zhao Department of Radiology Shanghai Cancer Hospital Fudan University Shanghai 200032 , P. R. China


Angewandte Chemie | 2014

Real‐Time In Vivo Quantitative Monitoring of Drug Release by Dual‐Mode Magnetic Resonance and Upconverted Luminescence Imaging

Jianan Liu; Jiwen Bu; Wenbo Bu; Shengjian Zhang; Limin Pan; Wenpei Fan; Feng Chen; Liangpin Zhou; Weijun Peng; Kuaile Zhao; Jiu-lin Du; Jianlin Shi

Insufficient or excess drug doses, due to unknown actual drug concentrations at the focus, are one of the main causes of chemotherapy failure for cancers. In this regard, the real-time monitoring of the release of anticancer drugs from nanoparticle drug delivery systems is of crucial importance, but it remains a critical and unsolved challenge. Herein, we report the proposal and development of a novel concept of real-time monitoring of NIR-triggered drug release in vitro and in vivo by using simultaneous upconverted luminescence (UCL) and magnetic resonance (MR) imaging. Such a monitoring strategy features the high sensitivity of UCL and the high-resolution, noninvasiveness, and tissue-depth-independence of MR imaging. The dual-mode real-time and quantitative monitoring of drug release can be applied to determine online the drug concentrations in vivo in the tissue regions of interest and, therefore, to avoid insufficient or excess drug dosings.


Biomaterials | 2015

Radiation-/hypoxia-induced solid tumor metastasis and regrowth inhibited by hypoxia-specific upconversion nanoradiosensitizer.

Yanyan Liu; Yong Liu; Wenbo Bu; Qingfeng Xiao; Yong Sun; Kuaile Zhao; Wenpei Fan; Jianan Liu; Jianlin Shi

Tumor resistance to ionizing irradiation and cancer cells metastasis stimulated by radiation often lead to anti-cancer failure, and can be negatively caused by a key role--cellular hypoxia. In this regard, the exploitation of hypoxia-specific cytotoxic agents which assist to potentiate the anti-tumor effect of radiotherapy (RT) as well as efficiently counteract radiation-/hypoxia-induced cancer cell metastasis, becomes especially important, but has been widely overlooked. Herein, a core/shell-structured multifunctional nanoradiosensitizer with upconversion nanoparticle (UCNP) as an inside core, mesoporous silica as the shell and a cavity in between, has been constructed, in which UCNP core serves as radiation dose amplifiers and bio-reductive pro-drug--tirapazamine (TPZ) loaded in cavity is an hypoxia-selective cytotoxin and the silica shell provides the protection and diffusion path for TPZ. Such nanoradiosensitizer has been employed to inhibit the hypoxia-reoxygenation and the subsequent replication of cancer cells that often occurs after a single unaccompanied RT at low doses, and to silence the expression of transcription factors that support the progression of malignancy in cancer. This study confirms the radiotherapeutic benefits of utilizing nanoradiosensitizer as adjuvant to low-dose RT, and the results demonstrate the highly efficient hypoxia-specific killing in oxygen-dependent anti-tumor therapies.


Angewandte Chemie | 2015

X‐ray Radiation‐Controlled NO‐Release for On‐Demand Depth‐Independent Hypoxic Radiosensitization

Wenpei Fan; Wenbo Bu; Zhen Zhang; Bo Shen; Hui Zhang; Qianjun He; Dalong Ni; Zhaowen Cui; Kuaile Zhao; Jiwen Bu; Jiu-lin Du; Jianan Liu; Jianlin Shi

Multifunctional stimuli-responsive nanotheranostic systems are highly desirable for realizing simultaneous biomedical imaging and on-demand therapy with minimized adverse effects. Herein, we present the construction of an intelligent X-ray-controlled NO-releasing upconversion nanotheranostic system (termed as PEG-USMSs-SNO) by engineering UCNPs with S-nitrosothiol (R-SNO)-grafted mesoporous silica. The PEG-USMSs-SNO is designed to respond sensitively to X-ray radiation for breaking down the S-N bond of SNO to release NO, which leads to X-ray dose-controlled NO release for on-demand hypoxic radiosensitization besides upconversion luminescent imaging through UCNPs in vitro and in vivo. Thanks to the high live-body permeability of X-ray, our developed PEG-USMSs-SNO may provide a new technique for achieving depth-independent controlled NO release and positioned radiotherapy enhancement against deep-seated solid tumors.


Angewandte Chemie | 2017

Glucose‐Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starving‐Like/Gas Therapy

Wenpei Fan; Nan Lu; Peng Huang; Yi Liu; Zhen Yang; Sheng Wang; Guocan Yu; Yijing Liu; Junkai Hu; Qianjun He; Junle Qu; Tianfu Wang; Xiaoyuan Chen

Glucose is a key energy supplier and nutrient for tumor growth. Herein, inspired by the glucose oxidase (GOx)-assisted conversion of glucose into gluconic acid and toxic H2 O2 , a novel treatment paradigm of starving-like therapy is developed for significant tumor-killing effects, more effective than conventional starving therapy by only cutting off the energy supply. Furthermore, the generated acidic H2 O2 can oxidize l-Arginine (l-Arg) into NO for enhanced gas therapy. By using hollow mesoporous organosilica nanoparticle (HMON) as a biocompatible/biodegradable nanocarrier for the co-delivery of GOx and l-Arg, a novel glucose-responsive nanomedicine (l-Arg-HMON-GOx) has been for the first time constructed for synergistic cancer starving-like/gas therapy without the need of external excitation, which yields a remarkable H2 O2 -NO cooperative anticancer effect with minimal adverse effect.


ACS Applied Materials & Interfaces | 2016

Light-Responsive Biodegradable Nanomedicine Overcomes Multidrug Resistance via NO-Enhanced Chemosensitization

Jing Fan; Qianjun He; Yi Liu; Fuwu Zhang; Xiangyu Yang; Zhe Wang; Nan Lu; Wenpei Fan; Lisen Lin; Gang Niu; Nongyue He; Jibin Song; Xiaoyuan Chen

Multidrug resistance (MDR) is responsible for the relatively low effectiveness of chemotherapeutics. Herein, a nitric oxide (NO) gas-enhanced chemosensitization strategy is proposed to overcome MDR by construction of a biodegradable nanomedicine formula based on BNN6/DOX coloaded monomethoxy(polyethylene glycol)-poly(lactic-co-glycolic acid) (mPEG-PLGA). On one hand, the nanomedicine features high biocompatibility due to the high density of PEG and biodegradable PLGA. On the other hand, the nanoformula exhibits excellent stability under physiological conditions but exhibits stimuli-responsive decomposition of BNN6 for NO gas release upon ultraviolet-visible irradiation. More importantly, after NO release is triggered, gas molecules are generated that break the nanoparticle shell and lead to the release of doxorubicin. Furthermore, NO was demonstrated to reverse the MDR of tumor cells and enhance the chemosensitization for doxorubicin therapy.


Advanced Materials | 2017

Core–Satellite Polydopamine–Gadolinium-Metallofullerene Nanotheranostics for Multimodal Imaging Guided Combination Cancer Therapy

Sheng Wang; Jing Lin; Zhantong Wang; Zijian Zhou; Ruiliang Bai; Nan Lu; Yijing Liu; Xiao Fu; Orit Jacobson; Wenpei Fan; Junle Qu; Siping Chen; Tianfu Wang; Peng Huang; Xiaoyuan Chen

Integration of magnetic resonance imaging (MRI) and other imaging modalities is promising to furnish complementary information for accurate cancer diagnosis and imaging-guided therapy. However, most gadolinium (Gd)-chelator MR contrast agents are limited by their relatively low relaxivity and high risk of released-Gd-ions-associated toxicity. Herein, a radionuclide-64 Cu-labeled doxorubicin-loaded polydopamine (PDA)-gadolinium-metallofullerene core-satellite nanotheranostic agent (denoted as CDPGM) is developed for MR/photoacoustic (PA)/positron emission tomography (PET) multimodal imaging-guided combination cancer therapy. In this system, the near-infrared (NIR)-absorbing PDA acts as a platform for the assembly of different moieties; Gd3 N@C80 , a kind of gadolinium metallofullerene with three Gd ions in one carbon cage, acts as a satellite anchoring on the surface of PDA. The as-prepared CDPGM NPs show good biocompatibility, strong NIR absorption, high relaxivity (r 1 = 14.06 mM-1 s-1 ), low risk of release of Gd ions, and NIR-triggered drug release. In vivo MR/PA/PET multimodal imaging confirms effective tumor accumulation of the CDPGM NPs. Moreover, upon NIR laser irradiation, the tumor is completely eliminated with combined chemo-photothermal therapy. These results suggest that the CDPGM NPs hold great promise for cancer theranostics.

Collaboration


Dive into the Wenpei Fan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenbo Bu

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Jianlin Shi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yijing Liu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dalong Ni

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jibin Song

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nan Lu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Zhen Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge