Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wenping Xie.
Ecotoxicology | 2011
Yan Cheng; Yuan Cui; Hui-ming Chen; Wenping Xie
Perfluorooctane sulfonate (PFOS), one of the emerging persistent organic pollutants (POPs), has caused growing international concern especially related to the potential disruption in the development and function of thyroid system. Xenopus laevis is an amphibian species widely used as a suitable amphibian model for thyroid disruption research. To study the thyroid disruption effects related to PFOS exposure at environmental low levels, X. laevis tadpoles were exposed to 0.1, 1, 10 and 100xa0μg/l PFOS in water respectively from stage 46/47 to stage 62. The results showed that the time to metamorphosis (presented by forelimb emergence, FLE) did not significantly change with PFOS exposure, but exhibited an increasing trend (except for 10xa0μg/l exposure). Partial colloid depletion was observed for PFOS exposure, but no significant histological abnormality was observed in treatment groups. In addition, PFOS exposure resulted in up-regulation of thyroid hormone-regulated genes—thyroid receptor beta A (TRβA), basic transcription element-binding protein (BTEB) and type II deiodinase (DI2) mRNA expression, presented as an inverted U-shaped dose response pattern. However, the mRNA expression of type III deiodinase (DI3) remained unaffected compared with the control. These results demonstrated that PFOS might disrupt the thyroid system in X. laevis tadpoles regarding FLE changes and regulation alternation of thyroid hormone-regulated genes. Our study has raised new concerns for possible thyroid disruption of PFOS in amphibians at environmental relevant levels.
Journal of Agricultural and Food Chemistry | 2016
Wei Liu; Cheng Sun; Chunyang Liao; Lin Cui; Haishan Li; Guangbo Qu; Wenlian Yu; Naining Song; Yuan Cui; Zheng Wang; Wenping Xie; Huiming Chen; Qunfang Zhou
Graphene has promising applications in food packaging, water purification, and detective sensors for contamination monitoring. However, the biological effects of graphene are not fully understood. It is necessary to clarify the potential risks of graphene exposure to humans through diverse routes, such as foods. In the present study, graphene, as the model nanomaterial, was used to test its potential effects on the cell proliferation based on multiple representative cell lines, including HepG2, A549, MCF-7, and HeLa cells. Graphene was characterized by Raman spectroscopy, particle size analysis, atomic force microscopy, and transmission electron microscopy. The cellular responses to graphene exposure were evaluated using flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and alamarBlue assays. Rat cerebral astrocyte cultures, as the non-cancer cells, were used to assess the potential cytotoxicity of graphene as well. The results showed that graphene stimulation enhanced cell proliferation in all tested cell cultures and the highest elevation in cell growth was up to 60%. A western blot assay showed that the expression of epidermal growth factor (EGF) was upregulated upon graphene treatment. The phosphorylation of EGF receptor (EGFR) and the downstream proteins, ShC and extracellular regulating kinase (ERK), were remarkably induced, indicating that the activation of the mitogen-activated protein kinase (MAPK)/ERK signaling pathway was triggered. The activation of PI3 kinase p85 and AKT showed that the PI3K/AKT signaling pathway was also involved in graphene-induced cell proliferation, causing the increase of cell ratios in the G2/M phase. No influences on cell apoptosis were observed in graphene-treated cells when compared to the negative controls, proving the low cytotoxicity of this emerging nanomaterial. The findings in this study revealed the potential cellular biological effect of graphene, which may give useful hints on its biosafety evaluation and the further exploration of the bioapplication.
International Journal of Environmental Research and Public Health | 2015
Yuan Cui; Wei Liu; Wenping Xie; Wenlian Yu; Cheng Wang; Huiming Chen
This study aimed to explore the effects of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) on apoptosis and cell cycle in a zebrafish (Danio rerio) liver cell line (ZFL). Treatment groups included a control group, PFOA-IC50, PFOA-IC80, PFOS-IC50 and PFOS-IC80 groups. IC50 and IC80 concentrations were identified by cellular modeling and MTT assays. mRNA levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were detected by qPCR. Cell apoptosis and cell cycle were detected by flow cytometry and the protein levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were determined by western blotting. Both PFOA and PFOS inhibited the growth of zebrafish liver cells, and the inhibition rate of PFOS was higher than that of PFOA. Bcl-2 expression levels in the four groups were significantly higher than the control group and Bcl-2 increased significantly in the PFOA-IC80 group. However, the expression levels of Bax in the four treatment groups were higher than the control group. The percentage of cell apoptosis increased significantly with the treatment of PFOA and PFOS (p < 0.05). Cell cycle and cell proliferation were blocked in both the PFOA-IC80 and PFOS-IC80 groups, indicating that PFOA-IC80 and PFOS-IC50 enhanced apoptosis in ZFL cells.
Science of The Total Environment | 2017
Lili Zhou; Wenpeng Zhang; Wenping Xie; Huiming Chen; Wenlian Yu; Haishan Li; Guolin Shen
As a newly emerging environmental contaminant, tributyl phosphate (TBP) is of increasing concern because of the environmental problems it can cause. Studies have suggested that TBP induces hepatocellular adenomas and has malignant potential for hepatocellular carcinoma. However, the mechanisms of its adverse effects are unclear. In this study, metabonomic techniques were used to identify differential endogenous metabolites, draw network metabolic pathways and conduct network analysis to elucidate the underlying mechanisms involved in TBP induced pathological changes of the liver. The metabonomics study showed that TBP altered endogenous metabolites in the plasma and liver. The number of categories of endogenous metabolites with a VIP >1 were 14 in plasma and 20 in liver. The results also showed that TBP impaired urea synthesis in the liver. In addition, results of both in vitro and in vivo experiments indicated that TBP activated nuclear receptor CAR and inhibited CYP3a11 and CYP2b10 activities in the liver of mice after short-term exposure. These effects may be the underlying causes leading to TBP induced hepatocellular adenomas. This study combined metabonomics and other technical methods to clarify the mechanism of TBP-induced liver tumorigenesis from a new perspective.
Journal of Agricultural and Food Chemistry | 2017
Guolin Shen; Lili Zhou; Wei Liu; Yuan Cui; Wenping Xie; Huiming Chen; Wenlian Yu; Wentao Li; Haishan Li
Di(2-ethylhexyl) phthalate (DEHP) is considered to be an environmental endocrine disruptor at high levels of general exposure. Studies show that DEHP may cause testicular toxicity on human being. In this study, metabonomics techniques were used to identify differential endogenous metabolites, draw the network metabolic pathways, and conduct network analysis, to determine the underlying mechanisms of testicular toxicity induced by DEHP. The results showed that DEHP inhibited synthesis and accelerated β-oxidation of fatty acids and impaired the tricarboxylic acid cycle (TCA cycle) and gluconeogenesis, resulting in lactic acid accumulation and an insufficient ATP supply in the microenvironment of the testis. These alterations led to testicular atrophy and, thus, may be the underlying causes of testicular toxicity. DEHP also inhibited peroxisome proliferator activated receptors in the testis, which may be another potential reason for the testicular atrophy. These findings provided new insights to better understand the mechanisms of testicular toxicity induced by DEHP exposure.
Food and Chemical Toxicology | 2016
Naining Song; Lei Li; Haishan Li; Wenchao Ai; Wenping Xie; Wenlian Yu; Wei Liu; Cheng Wang; Guolin Shen; Lili Zhou; Changlei Wei; Dong Li; Huiming Chen
Limited toxicological information is available for hexabromocyclododecane (HBCD),a widely used additive brominated flame retardant. Inhalation is a major route of human exposure to HBCD. The aim of this study was to determine the acute inhalation toxicity and potential subchronic inhalation toxicity of HBCD in Sprague-Dawley rats exposed to HBCD only through inhalation. The acute inhalation toxicity of HBCD was determined using the limit test method on five male and five female Sprague-Dawley rats at a HBCD concentration of 5000 mg/m(3). Repeated-dose toxicity tests were also performed, with 20 males and 20 females randomly assigned to four experimental groups (five rats of each sex in each group). There were three treatment groups (exposed to HBCD concentrations of 125,500, and 2000 mg/m(3)) and a blank control group (exposed to fresh air). In the acute inhalation toxicity study, no significant clinical signs were observed either immediately after exposure or during the recovery period. Gross pathology examination revealed no evidence of organ-specific toxicity in any rat. The inhalation LC50(4 h) for HBCD was higher than 5312 ± 278 mg/m3 for both males and females. In the repeated dose inhalation study, daily head/nose-only exposure to HBCD at 132 ± 8.8, 545.8 ± 35.3, and 2166.0 ± 235.9 mg/m(3) for 14 days caused no adverse effects. No treatment-related clinical signs were observed at any of the test doses. The NOAEL for 14-day repeated dose inhalation toxicity study of HBCD is 2000 mg/m(3).
Toxicology Letters | 2018
Wentao Li; Wenpeng Zhang; Mengyang Chang; Juan Ren; Wenping Xie; Huiming Chen; Zhenqing Zhang; Xiaomei Zhuang; Guolin Shen; Haishan Li
This study combined metabonomics with molecular biology techniques to identify differential endogenous substances produced by triclocarban (TCC) that affect plasma and liver metabolism in mice, to map their associated metabolic pathways, and to systematically determine the mechanism of TCC affecting liver metabolism in mice. The results showed that TCC affected liver metabolism by a mechanism involving the inhibition of glucose oxidation in the liver, promotion of anaerobic glycolysis and gluconeogenesis, and accelerated β-oxidation of liver fatty acids and the TCA cycle, which lead to metabolic disorders of the liver microenvironment in mice. The analysis of endogenous substances in the liver and plasma indicated that TCC caused physiological and pathological changes in the liver, and affected the physiological state of mice and the metabolic balance of endogenous substances. Based on metabonomics and bioinformatics analysis methods, this study elucidated a new mechanism involved in how TCC affects liver metabolism.
Journal of Agricultural and Food Chemistry | 2018
Wenping Xie; Wenpeng Zhang; Juan Ren; Wentao Li; Lili Zhou; Yuan Cui; Huiming Chen; Wenlian Yu; Xiaomei Zhuang; Zhenqing Zhang; Guolin Shen; Haishan Li
Triclocarban (TCC) has been identified as a new environmental pollutant that is potentially hazardous to human health; however, the effects of short-term TCC exposure on cardiac function are not known. The aim of this study was to use metabonomics and molecular biology techniques to systematically elucidate the molecular mechanisms of TCC-induced effects on cardiac function in mice. Our results show that TCC inhibited the uptake, synthesis, and oxidation of fatty acids, suppressed the tricarboxylic acid (TCA) cycle, and increased aerobic glycolysis levels in heart tissue after short-term TCC exposure. TCC also inhibited the nuclear peroxisome proliferator-activated receptor α (PPARα), confirming its inhibitory effects on fatty acid uptake and oxidation. Histopathology and other analyses further confirm that TCC altered mouse cardiac physiology and pathology, ultimately affecting normal cardiac metabolic function. We elucidate the molecular mechanisms of TCC-induced harmful effects on mouse cardiac metabolism and function from a new perspective, using metabonomics and bioinformatics analysis data.
International Conference on Biological Engineering and Pharmacy 2016 (BEP 2016) | 2017
Haishan Li; Guolin Shen; Wenchao Ai; Wenping Xie; Hui Han; Huiming Chen
Phthalates are esters of phthalic acid and are mainly used as plasticizers. It was reported that some phthalates activated constitutive androstane receptor (CAR), the major xenobiotic sensor and metabolism regulating nuclear receptor. Here, we compared the effects of CAR activation induced by 15 common used phthalates, and elucidated the species-specific CAR activation by phthalates based on in vitro-in vivo test. Keywords-phthalates; constitutive androstane receptor; activation
International conference on Human Health and Medical Engineering | 2014
Haishan Li; Hui Han; Wenchao Ai; Wenping Xie; Huiming Chen