Wenqian Hu
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wenqian Hu.
Nature | 2009
Wenqian Hu; Thomas J. Sweet; Sangpen Chamnongpol; Kristian E. Baker; Jeff Coller
The rates of RNA decay and transcription determine the steady-state levels of all messenger RNA and both can be subject to regulation. Although the details of transcriptional regulation are becoming increasingly understood, the mechanism(s) controlling mRNA decay remain unclear. In yeast, a major pathway of mRNA decay begins with deadenylation followed by decapping and 5′–3′ exonuclease digestion. Importantly, it is hypothesized that ribosomes must be removed from mRNA before transcripts are destroyed. Contrary to this prediction, here we show that decay takes place while mRNAs are associated with actively translating ribosomes. The data indicate that dissociation of ribosomes from mRNA is not a prerequisite for decay and we suggest that the 5′–3′ polarity of mRNA degradation has evolved to ensure that the last translocating ribosome can complete translation.
EMBO Reports | 2012
Wenqian Hu; Juan R. Alvarez-Dominguez; Harvey F. Lodish
Differentiation of specialized cell types from stem and progenitor cells is tightly regulated at several levels, both during development and during somatic tissue homeostasis. Many long non‐coding RNAs have been recognized as an additional layer of regulation in the specification of cellular identities; these non‐coding species can modulate gene‐expression programmes in various biological contexts through diverse mechanisms at the transcriptional, translational or messenger RNA stability levels. Here, we summarize findings that implicate long non‐coding RNAs in the control of mammalian cell differentiation. We focus on several representative differentiation systems and discuss how specific long non‐coding RNAs contribute to the regulation of mammalian development.
Genes & Development | 2011
Wenqian Hu; Bingbing Yuan; Johan Flygare; Harvey F. Lodish
Long noncoding RNAs (lncRNAs) are differentially expressed under both normal and pathological conditions, implying that they may play important biological functions. Here we examined the expression of lncRNAs during erythropoiesis and identified an erythroid-specific lncRNA with anti-apoptotic activity. Inhibition of this lncRNA blocks erythroid differentiation and promotes apoptosis. Conversely, ectopic expression of this lncRNA can inhibit apoptosis in mouse erythroid cells. This lncRNA represses expression of Pycard, a proapoptotic gene, explaining in part the inhibition of programmed cell death. These findings reveal a novel layer of regulation of cell differentiation and apoptosis by a lncRNA.
Blood | 2014
Juan R. Alvarez-Dominguez; Wenqian Hu; Bingbing Yuan; Jiahai Shi; Staphany S. Park; Austin A. Gromatzky; Alexander van Oudenaarden; Harvey F. Lodish
Erythropoiesis is regulated at multiple levels to ensure the proper generation of mature red cells under multiple physiological conditions. To probe the contribution of long noncoding RNAs (lncRNAs) to this process, we examined >1 billion RNA-seq reads of polyadenylated and nonpolyadenylated RNA from differentiating mouse fetal liver red blood cells and identified 655 lncRNA genes including not only intergenic, antisense, and intronic but also pseudogene and enhancer loci. More than 100 of these genes are previously unrecognized and highly erythroid specific. By integrating genome-wide surveys of chromatin states, transcription factor occupancy, and tissue expression patterns, we identify multiple lncRNAs that are dynamically expressed during erythropoiesis, show epigenetic regulation, and are targeted by key erythroid transcription factors GATA1, TAL1, or KLF1. We focus on 12 such candidates and find that they are nuclear-localized and exhibit complex developmental expression patterns. Depleting them severely impaired erythrocyte maturation, inhibiting cell size reduction and subsequent enucleation. One of them, alncRNA-EC7, is transcribed from an enhancer and is specifically needed for activation of the neighboring gene encoding BAND 3. Our study provides an annotated catalog of erythroid lncRNAs, readily available through an online resource, and shows that diverse types of lncRNAs participate in the regulatory circuitry underlying erythropoiesis.
Cell Reports | 2014
Jenna E. Smith; Juan R. Alvarez-Dominguez; Nicholas Kline; Nathan J. Huynh; Sarah Geisler; Wenqian Hu; Jeff Coller; Kristian E. Baker
High-throughput gene expression analysis has revealed a plethora of previously undetected transcripts in eukaryotic cells. In this study, we investigate >1,100 unannotated transcripts in yeast predicted to lack protein-coding capacity. We show that a majority of these RNAs are enriched on polyribosomes akin to mRNAs. Ribosome profiling demonstrates that many bind translocating ribosomes within predicted open reading frames 10-96 codons in size. We validate expression of peptides encoded within a subset of these RNAs and provide evidence for conservation among yeast species. Consistent with their translation, many of these transcripts are targeted for degradation by the translation-dependent nonsense-mediated RNA decay (NMD) pathway. We identify lncRNAs that are also sensitive to NMD, indicating that translation of noncoding transcripts also occurs in mammals. These data demonstrate transcripts considered to lack coding potential are bona fide protein coding and expand the proteome of yeast and possibly other eukaryotes.
Nature Structural & Molecular Biology | 2010
Wenqian Hu; Christine Petzold; Jeff Coller; Kristian E. Baker
Nonsense-mediated decay (NMD) degrades mRNA containing premature translation termination codons. In yeast, NMD substrates are decapped and digested exonucleolytically from the 5′ end. Despite the requirement for translation in recognition, degradation of nonsense-containing mRNA is considered to occur in ribosome-free cytoplasmic P bodies. We show decapped nonsense-containing mRNA associate with polyribosomes, indicating that recognition and degradation are tightly coupled and that polyribosomes are major sites for degradation of aberrant mRNAs.
Cell Research | 2012
Wenqian Hu; Jeff Coller
While many mechanisms have been proposed for microRNAs (miRNAs) function, most ultimately cause message degradation. A view has emerged that miRNAs silence gene expression by promoting the association of mRNA decay factors. Recent research results, however, suggest that in both zebrafish and fruit fly, translational inhibition is the initiating event of miRNA-mediated gene silencing.
International Journal of Hematology | 2014
Juan R. Alvarez-Dominguez; Wenqian Hu; Austin A. Gromatzky; Harvey F. Lodish
Long noncoding RNAs (lncRNAs) are increasingly recognized to contribute to cellular development via diverse mechanisms during both health and disease. Here, we highlight recent progress on the study of lncRNAs that function in the development of blood cells. We emphasize lncRNAs that regulate blood cell fates through epigenetic control of gene expression, an emerging theme among functional lncRNAs. Many of these noncoding genes and their targets become dysregulated during malignant hematopoiesis, directly implicating lncRNAs in blood cancers such as leukemia. In a few cases, dysregulation of an lncRNA alone leads to malignant hematopoiesis in a mouse model. Thus, lncRNAs may be not only useful as markers for the diagnosis and prognosis of cancers of the blood, but also as potential targets for novel therapies.
Blood | 2017
Juan R. Alvarez-Dominguez; Xu Zhang; Wenqian Hu
Cell development requires tight yet dynamic control of protein production. Here, we use parallel RNA and ribosome profiling to study translational regulatory dynamics during murine terminal erythropoiesis. Our results uncover pervasive translational control of protein synthesis, with widespread alternative translation initiation and termination, robust discrimination of long noncoding from micropeptide-encoding RNAs, and dynamic use of upstream open reading frames. Further, we identify hundreds of messenger RNAs (mRNAs) whose translation efficiency is dynamically controlled during erythropoiesis and that enrich for target sites of RNA-binding proteins that are specific to hematopoietic cells, thus unraveling potential regulators of erythroid translational programs. A major such program involves enhanced decoding of specific mRNAs that are depleted in terminally differentiating/enucleating cells with decreasing transcriptional capacity. We find that RBM38, an erythroid-specific RNA-binding protein previously implicated in splicing, interacts with the general translation initiation factor eIF4G and promotes translation of a subset of these irreplaceable mRNAs. Inhibition of RBM38 compromises translation in erythroblasts and impairs their maturation, highlighting a key function for this protein during erythropoiesis. These findings thus reveal critical roles for dynamic translational control in supporting specialized mammalian cell formation.
Journal of Clinical Microbiology | 2005
Wenqian Hu; Bingke Bai; Zhihong Hu; Ze Chen; Xuefang An; Lijun Tang; Jihong Yang; Hualin Wang; Hanzhong Wang
ABSTRACT Severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) is the etiological agent of SARS. It is believed that SARS-CoV originates from wild animals. We have developed a multitarget real-time Taqman reverse transcription-PCR (RT-PCR) assay for the quantitative detection of SARS-CoV. The sequences of the Taqman probes with a minor groove binder and the corresponding primers were based on the sequences of the N gene, open reading frame (ORF) 3, and ORF 8. The overall linear range of this assay was from at least 101 to 106 copies per reaction, and the detection limit could reach less than 10 copies per reaction. The quantification results for SARS-CoV from cell culture correlated well with those of the RT-PCR by using any two of the three sets of primer and probe used in this assay. However, the results of quantification of SARS-CoV obtained by using a few available throat swab specimens from SARS patients and the N gene as the target were almost 10 times higher than those obtained by using ORF 3 and ORF 8. Using this assay, we also detected an apparently SARS-CoV-related coronavirus in the throat swab specimens from masked palm civets in the west part of Hubei Province, Peoples Republic of China.