Wensheng Qin
Lakehead University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wensheng Qin.
Critical Reviews in Biotechnology | 2010
Mehdi Dashtban; Miranda Maki; Kam Tin Leung; Canquan Mao; Wensheng Qin
Cellulose, the major constituent of all plant materials and the most abundant organic molecule on the Earth, is a linear biopolymer of glucose molecules, connected by β-1,4-glycosidic bonds. Enzymatic hydrolysis of cellulose requires mixtures of hydrolytic enzymes including endoglucanases, exoglucanases (cellobiohydrolases), and β-glucosidases acting in a synergistic manner. In biopolymer hydrolysis studies, enzyme assay is an indispensable part. The most commonly used assays for the individual enzymes as well as total cellulase activity measurements, including their advantages and limitations, are summarized in this review article. In addition, some novel approaches recently used for enzyme assays are summarized.
Cellular and Molecular Life Sciences | 2009
Daniel Doucet; Virginia K. Walker; Wensheng Qin
Abstract.The widespread distribution of insects over many ecological niches is a testimony to their evolutionary success. The colonization of environments at high latitudes or altitudes required the evolution of biochemical strategies that reduced the impact of cold or freezing stress. This review focuses on our current interests in some of the genes and proteins involved in low temperature survival in insects. Although the most widespread form of protection is the synthesis of low molecular weight polyol cryoprotectants, proteins with intrinsic protective properties, such as the thermal hysteresis or antifreeze proteins are also important. These have been cloned and characterized in certain moths and beetles. Molecular techniques allowing the isolation of genes differentially regulated by low temperatures have revealed that heat shock proteins, cold stress proteins, membrane protectants, as well as ice nucleators and other less well characterized proteins likely also play a role in cold hardiness.
Bioresource Technology | 2011
W.J. Gao; Kam Tin Leung; Wensheng Qin; Bao-Qiang Liao
Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor (SAnMBR) treating thermomechanical pulping pressate were studied for 416 days. The results showed that the SAnMBR system were highly resilient to temperature variations in terms of chemical oxygen demand (COD) removal. The residual COD in treated effluent was slightly higher at 55 °C than that at 37 and 45 °C. There were no significant changes in biogas production rate and biogas composition. However, temperature shocks resulted in an increase in biogas production temporarily. The SAnMBR could tolerate the 5 and 10 °C temperature shocks at 37 °C and the temperature variations from 37 to 45 °C. The temperature shock of 5 and 10 °C at 45 °C led to slight and significant disturbance of the performance, respectively. Temperature affected the richness and diversity of microbial populations.
Cell Stress & Chaperones | 2003
Wensheng Qin; Michael G. Tyshenko; Bernhard S. Wu; Virginia K. Walker; R. Meldrum Robertson
Abstract A complementary deoxyribonucleic acid (cDNA) and the corresponding gene segment encoding a member of the 70-kDa heat shock protein (Hsp70) family have been cloned and sequenced from Locusta migratoria, the African migratory locust. These animals are noted for their thermotolerance, which can exceed temperatures of 50°C. Conceptually translated, the sequence shows a 654-residue protein with theoretical molecular weight of 71.4 kDa, which more closely resembles the mammalian Hsp70 (84–85% similarity) than Hsp70 from other insects, with ∼75% similarity to the sequence from the fruit fly. Comparisons of cDNA and genomic sequences show that the gene contains 2 introns, a 245-bp intron located in the 5′ untranslated region and a 91-bp intron in the coding region. Transcript abundance, as estimated by Northern blot analysis and reverse transcription–polymerase chain reaction, shows that heat shock treatment (45°C for 3 hours) does not elevate hsp70 messenger ribonucleic acid levels in fat bodies or in neural tissues. Immunological assays of Hsp70 show that the protein is constitutively expressed, with a modest, ∼2-fold induction after a 3-hour heat shock in fat body preparations. Although this sequence could be an hsc70 rather than an hsp70, it was the only cDNA isolated from heat-shocked tissue. Whatever the formal designation, such modest induction and constitutive expression may be ideally suited as an adaptation to the locusts chronic exposure to heat shock temperatures and the consequent demand for chaperone proteins.
Microbial Cell Factories | 2012
Mehdi Dashtban; Wensheng Qin
BackgroundTrichoderma reesei is a widely used industrial strain for cellulase production, but its low yield of β-glucosidase has prevented its industrial value. In the hydrolysis process of cellulolytic residues by T. reesei, a disaccharide known as cellobiose is produced and accumulates, which inhibits further cellulases production. This problem can be solved by adding β-glucosidase, which hydrolyzes cellobiose to glucose for fermentation. It is, therefore, of high vvalue to construct T. reesei strains which can produce sufficient β-glucosidase and other hydrolytic enzymes, especially when those enzymes are capable of tolerating extreme conditions such as high temperature and acidic or alkali pH.ResultsWe successfully engineered a thermostable β-glucosidase gene from the fungus Periconia sp. into the genome of T. reesei QM9414 strain. The engineered T. reesei strain showed about 10.5-fold (23.9 IU/mg) higher β-glucosidase activity compared to the parent strain (2.2 IU/mg) after 24 h of incubation. The transformants also showed very high total cellulase activity (about 39.0 FPU/mg) at 24 h of incubation whereas the parent strain almost did not show any total cellulase activity at 24 h of incubation. The recombinant β-glucosidase showed to be thermotolerant and remains fully active after two-hour incubation at temperatures as high as 60°C. Additionally, it showed to be active at a wide pH range and maintains about 88% of its maximal activity after four-hour incubation at 25°C in a pH range from 3.0 to 9.0. Enzymatic hydrolysis assay using untreated, NaOH, or Organosolv pretreated barley straw as well as microcrystalline cellulose showed that the transformed T. reesei strains released more reducing sugars compared to the parental strain.ConclusionsThe recombinant T. reesei overexpressing Periconia sp. β-glucosidase in this study showed higher β-glucosidase and total cellulase activities within a shorter incubation time (24 h) as well as higher hydrolysis activity using biomass residues. These features suggest that the transformants can be used for β-glucosidase production as well as improving the biomass conversion using cellulases.
Journal of Molecular Microbiology and Biotechnology | 2012
Miranda Maki; Amna Idrees; Kam Tin Leung; Wensheng Qin
This study focuses on the isolation and characterization of bacteria from municipal waste and peat to determine those bacteria with good potential for modification and decomposition of lignocellulosic biomass for industrial application. Twenty cellulase-producing bacteria belonging to four major phyla – Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes – were found when screened on carboxymethyl cellulose-containing agar. Six isolates also exhibited activities towards filter paper as the sole carbon source in salt media, while 12 exhibited activities towards xylan when screened on xylan-containing plates. Moreover, 5 isolates survived in and increased the absorbance of 1% black liquor in salt media by an average of 2.07-fold after 21 days of incubation. Similarly, these 5 isolates increased the absorbance of 0.1% pure lignin at 280 nm in salt media, indicating modification of lignin. Additionally, the Fourier transform infrared spectroscopy analysis of 1% barley straw treated for 21 days with these 5 strains showed a preference for consumption of hemicelluloses over lignin; however, a change in lignin was observed. A Bacillus strain (55S5) and a Pseudomonas strain (AS1) displayed the greatest potential for lignocellulose decomposition due to a variety of cellulase activities, as well as xylanase activity and modification of lignin. Several of these isolates have good potential for industrial use in the degradation of lignocellulosic biomass.
Journal of Molecular Evolution | 2007
Laurie A. Graham; Wensheng Qin; Stephen C. Lougheed; Peter L. Davies; Virginia K. Walker
Some organisms that experience subzero temperatures, such as insects, fish, bacteria, and plants, synthesize antifreeze proteins (AFPs) that adsorb to surfaces of nascent ice crystals and inhibit their growth. Although some AFPs are globular and nonrepetitive, the majority are repetitive in both sequence and structure. In addition, they are frequently encoded by tandemly arrayed, multigene families. AFP isoforms from the mealworm beetle, Tenebrio molitor, are extremely potent and inhibit ice growth at temperatures below −5°C. They contain a 12-amino acid repeat with the sequence TCTxSxxCxxAx, each of which makes up one coil of the β-helix structure. TxT motifs are arrayed to form the ice-binding surface in all three known insect AFPs: the homologous AFPs from the two beetles, T. molitor and Dendroides canadensis, and the nonhomologous AFP from the spruce budworm, Choristoneura fumiferana. In this study, we have obtained the cDNA and genomic sequences of additional T. molitor isoforms. They show variation in the number of repeats (from 6 to 10) which can largely be explained by recombination at various TCT motifs. In addition, phylogenetic comparison of the AFPs from the two beetles suggests that gene loss and amplification may have occurred after the divergence of these species. In contrast to a previous study suggesting that T. molitor genes have undergone positive Darwinian selection (selection for heterogeneity), we propose that the higher than expected ratio of nonsynonymous-to-synonymous substitutions might result from selection for higher AT content in the third codon position.
International Journal of Biological Sciences | 2016
Ayyappa Kumar Sista Kameshwar; Wensheng Qin
Lignin is a complex polyphenyl aromatic compound which exists in tight associations with cellulose and hemicellulose to form plant primary and secondary cell wall. Lignocellulose is an abundant renewable biomaterial present on the earth. It has gained much attention in the scientific community in recent years because of its potential applications in bio-based industries. Microbial degradation of lignocellulose polymers was well studied in wood decaying fungi. Based on the plant materials they degrade these fungi were classified as white rot, brown rot and soft rot. However, some groups of bacteria belonging to the actinomycetes, α-proteobacteria and β-proteobacteria were also found to be efficient in degrading lignocellulosic biomass but not well understood unlike the fungi. In this review we focus on recent advancements deployed for finding and understanding the lignocellulose degradation by microorganisms. Conventional molecular methods like sequencing 16s rRNA and Inter Transcribed Spacer (ITS) regions were used for identification and classification of microbes. Recent progression in genomics mainly next generation sequencing technologies made the whole genome sequencing of microbes possible in a great ease. The whole genome sequence studies reveals high quality information about genes and canonical pathways involved in the lignin and other cell wall components degradation.
Insect Molecular Biology | 2007
Wensheng Qin; Daniel Doucet; Michael G. Tyshenko; Virginia K. Walker
Antifreeze proteins (AFPs) are encoded by approximately 17 genes in the spruce budworm, Choristoneura fumiferana. Northern analysis using 6 different cDNA probes showed isoform‐specific patterns that varied during development. Transcripts for the majority of isoforms were most abundant in the second instar overwintering stage, but some were also detected in first instar and even in egg stages. In situ hybridization using riboprobes corresponding to two 9 kDa protein isoforms showed differential AFP expression even in second instars; CfAFP10 RNA was detected in all tissues, but CfAFP337 RNA distribution was more limited. Two genomic regions encoding three AFP genes have been isolated. Presumptive regulatory regions conferred transcriptional activity when placed upstream of a luciferase reporter sequence and transfected into a C. fumiferana cell line. The CfAFP2.26 core promoter is an 87 bp sequence containing a TATA box, whereas the CfAFP2.7 core promoter is a 76 bp sequence with both a TATA box and CAAT box, which directed higher reporter activities when tested in vitro. Reporter activity was not enhanced with five different hormones, although lower activities were observed with all intron‐containing constructs. AFP message half‐life, as assessed using reporter assays, was not appreciably influenced by isoform‐specific‐3′UTRs. These studies successfully demonstrate the temporal and spatial diversity of AFP expression encoded by this small gene family, and underscore the complexity of their regulation.
Catalysis Reviews | 2016
Malaya R. Nanda; Zhongshun Yuan; Wensheng Qin; Chunbao (Charles) Xu
ABSTRACT The renewability of bio-glycerol has made it an attractive platform for the production of diverse compounds. Selective hydrogenolysis of glycerol to propylene glycol (PG) is one of the most promising routes for glycerol valorization, since this compound is an important chemical intermediate in a number of applications. In this article, advancements in the catalytic conversion of glycerol into propylene glycol are reviewed, which include advances in process development, effects of preparation and activation methods on catalytic activity and stability, and the performance of various types of catalysts. The feasibility of using bio-hydrogen and the challenges of utilizing crude glycerol for glycerol hydrogenolysis are also discussed.