Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wensheng Yu is active.

Publication


Featured researches published by Wensheng Yu.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery and SAR of hydantoin TACE inhibitors.

Wensheng Yu; Zhuyan Guo; Peter Orth; Madison; Liya Chen; Chaoyang Dai; Robert J. Feltz; Viyyoor Moopil Girijavallabhan; Seongkon Kim; Joseph A. Kozlowski; Brian J. Lavey; Dansu Li; Daniel Lundell; Xiaoda Niu; John J. Piwinski; Janeta Popovici-Muller; Razia Rizvi; Kristin E. Rosner; Bandarpalle B. Shankar; Neng-Yang Shih; M.A Siddiqui; Jing Sun; Ling Tong; Shelby Umland; Michael K.C. Wong; De-Yi Yang; Guowei Zhou

We disclose inhibitors of TNF-alpha converting enzyme (TACE) designed around a hydantoin zinc binding moiety. Crystal structures of inhibitors bound to TACE revealed monodentate coordination of the hydantoin to the zinc. SAR, X-ray, and modeling designs are described. To our knowledge, these are the first reported X-ray structures of TACE with a hydantoin zinc ligand.


Bioorganic & Medicinal Chemistry Letters | 2010

Biaryl substituted hydantoin compounds as TACE inhibitors

Wensheng Yu; Ling Tong; Seong Heon Kim; Michael K.C. Wong; Lei Chen; De-Yi Yang; Bandarpalle B. Shankar; Brian J. Lavey; Guowei Zhou; Aneta Kosinski; Razia Rizvi; Dansu Li; Robert J. Feltz; John J. Piwinski; Kristin E. Rosner; Neng-Yang Shih; M. Arshad Siddiqui; Zhuyan Guo; Peter Orth; Himanshu Shah; Jing Sun; Shelby Umland; Daniel Lundell; Xiaoda Niu; Joseph A. Kozlowski

We disclose further optimization of hydantoin TNF-alpha convertase enzyme (TACE) inhibitors. SAR with respect to the non-prime region of TACE active site was explored. A series of biaryl substituted hydantoin compounds was shown to have sub-nanomolar K(i), good rat PK, and good selectivity versus MMP-1, -2, -3, -7, -9, and -13.


Bioorganic & Medicinal Chemistry Letters | 2011

III. Identification of novel CXCR3 chemokine receptor antagonists with a pyrazinyl-piperazinyl-piperidine scaffold.

Seong Heon Kim; Gopinadhan N. Anilkumar; Lisa Guise Zawacki; Qingbei Zeng; De-Yi Yang; Yuefei Shao; Guizhen Dong; Xiaolian Xu; Wensheng Yu; Yueheng Jiang; Chung-Her Jenh; James W. Hall; Carolyn DiIanni Carroll; Doug W. Hobbs; John J. Baldwin; Brian F. Mcguinness; Stuart B. Rosenblum; Joseph A. Kozlowski; Bandarpalle B. Shankar; Neng-Yang Shih

The SAR of a novel pyrazinyl-piperazinyl-piperidine scaffold with CXCR3 receptor antagonist activity was explored. Optimization of the DMPK profile and reduction of hERG inhibition is described. Compound 16e with single-digit CXCR3 affinity, good rat PK and hERG profiles has been identified as a lead for further study.


Bioorganic & Medicinal Chemistry Letters | 2016

Discovery of silyl proline containing HCV NS5A inhibitors with pan-genotype activity: SAR development

Anilkumar G. Nair; Qingbei Zeng; Oleg Selyutin; Stuart B. Rosenblum; Yueheng Jiang; De-Yi Yang; Kerry Keertikar; Guowei Zhou; Michael P. Dwyer; Seong Heon Kim; Bandarpalle B. Shankar; Wensheng Yu; Ling Tong; Lei Chen; Robert Mazzola; John P. Caldwell; Haiqun Tang; Melissa L. Allard; Ronald N. Buckle; Polivina Jolicia F Gauuan; Christian L. Holst; Gregory Scott Martin; Kannan P. Naicker; Samuel Vellekoop; Sony Agrawal; Rong Liu; Rong Kong; Paul Ingravallo; Ellen Xia; Ying Zhai

HCV NS5A inhibitors have shown impressive in vitro potency profiles in HCV replicon assays thus making them attractive components for inclusion in an all oral fixed dose combination treatment regimen. Herein we describe the research efforts that led to the discovery of silyl proline containing HCV NS5A inhibitors such as 7e and 8a with pan-genotype activity profile and acceptable pharmacokinetic properties.


Bioorganic & Medicinal Chemistry Letters | 2010

Novel TNF-α converting enzyme (TACE) inhibitors as potential treatment for inflammatory diseases.

Vinay Girijavallabhan; Lei Chen; Chaoyang Dai; Robert J. Feltz; Luke Firmansjah; Dansu Li; Seong Heon Kim; Joseph A. Kozlowski; Brian J. Lavey; Aneta Kosinski; John J. Piwinski; Janeta Popovici-Muller; Razia Rizvi; Kristin E. Rosner; Banderpalle B. Shankar; Neng-Yang Shih; M. Arshad Siddiqui; Ling Tong; Michael K.C. Wong; De-Yi Yang; Liping Yang; Wensheng Yu; Guowei Zhou; Zhuyan Guo; Peter Orth; Vincent Madison; Hong Bian; Daniel Lundell; Xiaoda Niu; Himanshu Shah

Our research on hydantoin based TNF-α converting enzyme (TACE) inhibitors has led to an acetylene containing series that demonstrates sub-nanomolar potency (K(i)) as well as excellent activity in human whole blood. These studies led to the discovery of highly potent TACE inhibitors with good DMPK profiles.


Bioorganic & Medicinal Chemistry Letters | 2016

Aryl or heteroaryl substituted aminal derivatives of HCV NS5A inhibitor MK-8742.

Wensheng Yu; Craig A. Coburn; Anilkumar G. Nair; Michael Wong; Stuart B. Rosenblum; Guowei Zhou; Michael P. Dwyer; Ling Tong; Bin Hu; Bin Zhong; Jinglai Hao; Tao Ji; Shuai Zan; Seong Heon Kim; Qingbei Zeng; Oleg Selyutin; Lei Chen; Frédéric Massé; Sony Agrawal; Rong Liu; Ellen Xia; Ying Zhai; Stephanie Curry; Patricia McMonagle; Paul Ingravallo; Ernest Asante-Appiah; Mingxiang Lin; Joseph A. Kozlowski

Herein we describe our research efforts around the aryl and heteroaryl substitutions at the aminal carbon of the tetracyclic indole-based HCV NS5A inhibitor MK-8742. A series of potent NS5A inhibitors are described, such as compounds 45-47, 54, 56, and 65, which showed improved potency against clinically relevant and resistance associated HCV variants. The improved potency profiles of these compounds demonstrated an SAR that can improve the potency against GT2b, GT1a Y93H, and GT1a L31V altogether, which was unprecedented in our previous efforts in NS5A inhibition.


Bioorganic & Medicinal Chemistry Letters | 2010

Structure and activity relationships of tartrate-based TACE inhibitors.

Dansu Li; Janeta Popovici-Muller; David B. Belanger; John P. Caldwell; Chaoyang Dai; Maria David; Vinay Girijavallabhan; Brian J. Lavey; Joe F. Lee; Zhidan Liu; Rob Mazzola; Razia Rizvi; Kristin E. Rosner; Bandarpalle B. Shankar; Jim Spitler; Pauline C. Ting; Henry M. Vaccaro; Wensheng Yu; Guowei Zhou; Zhaoning Zhu; Xiaoda Niu; Jing Sun; Zhuyan Guo; Peter Orth; Shiying Chen; Joseph A. Kozlowski; Daniel Lundell; Vincent Madison; Brian A. McKittrick; John J. Piwinski

The syntheses and structure-activity relationships of the tartrate-based TACE inhibitors are discussed. The optimization of both the prime and non-prime sites led to compounds with picomolar activity. Several analogs demonstrated good rat pharmacokinetics.


Journal of Medicinal Chemistry | 2014

The discovery of N-((2H-tetrazol-5-yl)methyl)-4-((R)-1-((5r,8R)-8-(tert-butyl)-3-(3,5-dichlorophenyl)-2-oxo-1,4-diazaspiro[4.5]dec-3-en-1-yl)-4,4-dimethylpentyl)benzamide (SCH 900822): a potent and selective glucagon receptor antagonist.

Duane E. DeMong; Xing Dai; Joyce Hwa; Michael D. Miller; Sue-Ing Lin; Ling Kang; Andrew Stamford; William J. Greenlee; Wensheng Yu; Michael Wong; Brian J. Lavey; Joseph A. Kozlowski; Guowei Zhou; De-Yi Yang; Bhuneshwari Patel; Aileen Soriano; Ying Zhai; Christopher Sondey; Hongtao Zhang; Jean E. Lachowicz; Diane E. Grotz; Kathleen Cox; Richard Morrison; Teresa Andreani; Yang Cao; Mark Liang; Tao Meng; Paul McNamara; Jesse Wong; Prudence Bradley

A novel series of spiroimidazolone-based antagonists of the human glucagon receptor (hGCGR) has been developed. Our efforts have led to compound 1, N-((2H-tetrazol-5-yl)methyl)-4-((R)-1-((5r,8R)-8-(tert-butyl)-3-(3,5-dichlorophenyl)-2-oxo-1,4-diazaspiro[4.5]dec-3-en-1-yl)-4,4-dimethylpentyl)benzamide (SCH 900822), a potent hGCGR antagonist with exceptional selectivity over the human glucagon-like peptide-1 receptor. Oral administration of 1 lowered 24 h nonfasting glucose levels in imprinting control region mice on a high fat diet with diet-induced obesity following single oral doses of 3 and 10 mg/kg. Furthermore, compound 1, when dosed orally, was found to decrease fasting blood glucose at 30 mg/kg in a streptozotocin-treated, diet-induced obesity mouse pharmacodynamic assay and blunt exogenous glucagon-stimulated glucose excursion in prediabetic mice.


Bioorganic & Medicinal Chemistry Letters | 2016

Substituted tetracyclic indole core derivatives of HCV NS5A inhibitor MK-8742

Wensheng Yu; Guowei Zhou; Craig A. Coburn; Qingbei Zeng; Ling Tong; Michael P. Dwyer; Bin Hu; Bin Zhong; Jinglai Hao; Tao Ji; Shuai Zan; Lei Chen; Robert Mazzola; Jae-Hun Kim; Deyou Sha; Oleg Selyutin; Stuart B. Rosenblum; Brian J. Lavey; Anilkumar G. Nair; Seong Heon Kim; Kerry Keertikar; Laura Rokosz; Sony Agrawal; Rong Liu; Ellen Xia; Ying Zhai; Stephanie Curry; Patricia McMonagle; Paul Ingravallo; Ernest Asante-Appiah

As part of an ongoing effort in NS5A inhibition at Merck we now describe our efforts for introducing substitution around the tetracyclic indole core of MK-8742. Fluoro substitution on the core combined with the fluoro substitutions on the proline ring improved the potency against GT1a Y93H significantly. However, no improvement on GT2b potency was achieved. Limiting the fluoro substitution to C-1 of the tetracyclic indole core had a positive impact on the potency against the resistance associated variants, such as GT1a Y93H and GT2b, and the PK profile as well. Compounds, such as 62, with reduced potency shifts between wild type GT1a to GT2b, GT1a Y93H, and GT1a L31V were identified.


Bioorganic & Medicinal Chemistry Letters | 2016

Matched and mixed cap derivatives in the tetracyclic indole class of HCV NS5A inhibitors.

Michael P. Dwyer; Kerry Keertikar; Lei Chen; Ling Tong; Oleg Selyutin; Anilkumar G. Nair; Wensheng Yu; Guowei Zhou; Brian J. Lavey; De-Yi Yang; Michael Wong; Seong Heon Kim; Craig A. Coburn; Stuart B. Rosenblum; Qingbei Zeng; Yueheng Jiang; Bandarpalle B. Shankar; Razia Rizvi; Amin Nomeir; Rong Liu; Sony Agrawal; Ellen Xia; Rong Kong; Ying Zhai; Paul Ingravallo; Ernest Asante-Appiah; Joseph A. Kozlowski

A matched and mixed capping SAR study was conducted on the tetracyclic indole class of HCV NS5A inhibitors to examine the influence of modifications of this region on the overall HCV virologic resistance profiles.

Collaboration


Dive into the Wensheng Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge