Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wentao Qiao is active.

Publication


Featured researches published by Wentao Qiao.


Journal of Virology | 2012

The N-Terminal Region of IFITM3 Modulates Its Antiviral Activity by Regulating IFITM3 Cellular Localization

Rui Jia; Qinghua Pan; Shilei Ding; Liwei Rong; Shan-Lu Liu; Yunqi Geng; Wentao Qiao; Chen Liang

ABSTRACT Interferon-inducible transmembrane (IFITM) protein family members IFITM1, -2, and -3 restrict the infection of multiple enveloped viruses. Significant enrichment of a minor IFITM3 allele was recently reported for patients who were hospitalized for seasonal and 2009 H1N1 pandemic flu. This IFITM3 allele lacks the region corresponding to the first amino-terminal 21 amino acids and is unable to inhibit influenza A virus. In this study, we found that deleting this 21-amino-acid region relocates IFITM3 from the endosomal compartments to the cell periphery. This finding likely underlies the lost inhibition of influenza A virus that completes its entry exclusively within endosomes at low pH. Yet, wild-type IFITM3 and the mutant with the 21-amino-acid deletion inhibit HIV-1 replication equally well. Given the pH-independent nature of HIV-1 entry, our results suggest that IFITM3 can inhibit viruses that enter cells via different routes and that its N-terminal region is specifically required for controlling pH-dependent viruses.


European Journal of Medicinal Chemistry | 2012

Design, synthesis and antiviral activity of novel quinazolinones

Ziwen Wang; Mingxiao Wang; Xue Yao; Yue Li; Juan Tan; Lizhong Wang; Wentao Qiao; Yunqi Geng; Yuxiu Liu; Qingmin Wang

HIV-1 integrase (IN) is a validated therapeutic target for antiviral drug design. However, the emergence of viral strains resistant to clinically studied IN inhibitors demands the discovery of novel inhibitors that are structurally as well as mechanistically different. Herein, a series of quinazolinones were designed and synthesized as novel HIV-1 inhibitors. The new synthetic route provides a practical method for the preparation of 5-hydroxy quinazolinones. Primary bioassay results indicated that most of the quinazolinones possess anti-HIV activity, especially for compound 11b with 77.5% inhibition rate at 10 μM emerged as a new active lead. Most of the synthesized compounds were also found to exhibit good anti-TMV activity, of which compo und 9a showed similar in vivo anti-TMV activity to commercial plant virucide Ribavirin. This work provides a new and efficient approach to evolve novel multi-functional antiviral agents by rational integration and optimization of previously reported antiviral agents.


Cellular Microbiology | 2014

Identification of an endocytic signal essential for the antiviral action of IFITM3

Rui Jia; Fengwen Xu; Jin Qian; Yunfang Yao; Chunhui Miao; Yi-Min Zheng; Shan-Lu Liu; Fei Guo; Yunqi Geng; Wentao Qiao; Chen Liang

Members of the interferon‐induced transmembrane (IFITM) protein family inhibit the entry of a wide range of viruses. Viruses often exploit the endocytosis pathways to invade host cells and escape from the endocytic vesicles often in response to low pH. Localization to these endocytic vesicles is essential for IFITM3 to interfere with the cytosolic entry of pH‐dependent viruses. However, the nature of the sorting signal that targets IFITM3 to these vesicles is poorly defined. In this study, we report that IFITM3 possesses a YxxΦ sorting motif, i.e. 20‐YEML‐23, that enables IFITM3 to undergo endocytosis through binding to the μ2 subunit of the AP‐2 complex. IFITM3 accumulates at the plasma membrane as a result of either mutating 20‐YEML‐23, depleting the μ2 subunit or overexpressing μ2 mutants. Importantly, blocking endocytosis of IFITM3 abrogates its ability to inhibit pH‐dependent viruses. We have therefore identified a critical sorting signal, namely 20‐YEML‐23, that controls both the endocytic trafficking and the antiviral action of IFITM3. This finding also reveals that as an endocytic protein, IFITM3 first arrives at the plasma membrane before it is endocytosed and further traffics to the late endosomes where it acts to impede virus entry.


Journal of Biological Chemistry | 2011

Regulation of Tat Acetylation and Transactivation Activity by the Microtubule-associated Deacetylase HDAC6

Lihong Huo; Dengwen Li; Xiaoou Sun; Xingjuan Shi; Prasanthi Karna; Wei Yang; Min Liu; Wentao Qiao; Ritu Aneja; Jun Zhou

Reversible acetylation of Tat is critical for its transactivation activity toward HIV-1 transcription. However, the enzymes involved in the acetylation/deacetylation cycles have not been fully characterized. In this study, by yeast two-hybrid assay, we have discovered the histone deacetylase HDAC6 to be a binding partner of Tat. Our data show that HDAC6 interacts with Tat in the cytoplasm in a microtubule-dependent manner. In addition, HDAC6 deacetylates Tat at Lys-28 and thereby suppresses Tat-mediated transactivation of the HIV-1 promoter. Inactivation of HDAC6 promotes the interaction of Tat with cyclin T1 and leads to an increase in Tat transactivation activity. These findings establish HDAC6 as a Tat deacetylase and support a model in which Lys-28 deacetylation decreases Tat transactivation activity through affecting the ability of Tat to form a ribonucleoprotein complex with cyclin T1 and the transactivation-responsive RNA.


Journal of Biological Chemistry | 2013

The MOV10 Helicase Inhibits LINE-1 Mobility

Xiaoyu Li; Jianyong Zhang; Rui Jia; Vicky Cheng; Xin Xu; Wentao Qiao; Fei Guo; Chen Liang

Background: Retrotransposon LINE-1 causes dozens of genetic diseases. Results: Human MOV10 diminishes the level of LINE-1 RNA by acting at a post-transcriptional stage. Conclusion: The host protein suppresses LINE-1 transposition. Significance: MOV10 contributes to the cellular control of LINE-1 replication. LINE-1 (long interspersed element 1) is an autonomous non-long terminal repeat retrotransposon. Its replication often causes mutation and rearrangement of host genomic DNA. Accordingly, host cells have evolved mechanisms to control LINE-1 mobility. Here, we report that a helicase named MOV10 effectively suppresses LINE-1 transposition. Mutating the helicase motifs impairs this function of MOV10, suggesting that MOV10 requires its helicase activity to suppress LINE-1 replication. Further studies show that MOV10 post-transcriptionally diminishes the level of LINE-1 RNA. The association of MOV10 with both LINE-1 RNA and ORF1 suggests that MOV10 interacts with LINE-1 RNP and consequently causes its RNA degradation. These data demonstrate collectively that MOV10 contributes to the cellular control of LINE-1 replication.


Journal of Virology | 2008

IFP35 Is Involved in the Antiviral Function of Interferon by Association with the Viral Tas Transactivator of Bovine Foamy Virus

Juan Tan; Wentao Qiao; Jian Wang; Fengwen Xu; Yue Li; Jun Zhou; Qimin Chen; Yunqi Geng

ABSTRACT Interferon-induced proteins (IFPs) exert multiple functions corresponding to diverse interferon signals. However, the intracellular functions of many IFPs are not fully characterized. Here, we report that IFP35, a member of the IFP family with a molecular mass of 35 kDa, can interact with the bovine Tas (BTas) regulatory protein of bovine foamy virus (BFV). The interaction involves NID2 (IFP35/Nmi homology domain) of IFP35 and the central domain of BTas. The overexpression of IFP35 disturbs the ability of BTas to activate viral-gene transcription and inhibits viral replication. The depletion of endogenous IFP35 by interfering RNA can promote the activation of BFV, suggesting an inhibitory function of IFP35 in viral-gene expression. In addition, IFP35 can interact with the homologous regulatory protein of prototype FV and arrest viral replication and repress viral transcription. Our study suggests that IFP35 may represent a novel pathway of interferon-mediated antiviral activity in host organisms that plays a role in the maintenance of FV latency.


Retrovirology | 2015

The highly polymorphic cyclophilin A-binding loop in HIV-1 capsid modulates viral resistance to MxB

Zhenlong Liu; Qinghua Pan; Zhibin Liang; Wentao Qiao; Chen Liang

BackgroundThe human myxovirus-resistance protein B (MxB, also called Mx2) was recently reported to inhibit HIV-1 infection by impeding the nuclear import and integration of viral DNA. However, it is currently unknown whether there exist MxB-resistant HIV-1 strains in the infected individuals. Answer to this question should address whether MxB exerts an inhibitory pressure on HIV-1 in vivo and whether HIV-1 has evolved to evade MxB inhibition.FindingsWe have examined ten transmitted founder (T/F) HIV-1 strains for their sensitivity to MxB inhibition by infecting CD4+ T cell lines SupT1 and PM1 that were stably transduced to express MxB. Two T/F stains, CH040.c and RHPA.c, were found resistant and this resistance phenotype was mapped to the amino acid positions 87 and 208 in viral capsid. The H87Q mutation is located in the cyclophilin A (CypA) binding loop and has a prevalence of 21% in HIV-1 sequences registered in HIV database. This finding prompted us to test other frequent amino acid variants in the CypA-binding region and the results revealed MxB-resistant mutations at amino acid positions 86, 87, 88 and 92 in capsid. All these mutations diminished the interaction of HIV-1 capsid with CypA.ConclusionsOur results demonstrate the existence of MxB-resistant T/F HIV-1 strains. The high prevalence of MxB-resistant mutations in the CypA-binding loop indicates the significant selective pressure of MxB on HIV-1 replication in vivo especially given that this viral resistance mechanism operates at expense of losing CypA.


Virology Journal | 2011

Tetherin inhibits prototypic foamy virus release

Fengwen Xu; Juan Tan; Ruikang Liu; Dan Xu; Yue Li; Yunqi Geng; Chen Liang; Wentao Qiao

BackgroundTetherin (also known as BST-2, CD317, and HM1.24) is an interferon- induced protein that blocks the release of a variety of enveloped viruses, such as retroviruses, filoviruses and herpesviruses. However, the relationship between tetherin and foamy viruses has not been clearly demonstrated.ResultsIn this study, we found that tetherin of human, simian, bovine or canine origin inhibits the production of infectious prototypic foamy virus (PFV). The inhibition of PFV by human tetherin is counteracted by human immunodeficiency virus type 1 (HIV-1) Vpu. Furthermore, we generated human tetherin transmembrane domain deletion mutant (delTM), glycosyl phosphatidylinositol (GPI) anchor deletion mutant (delGPI), and dimerization and glycosylation deficient mutants. Compared with wild type tetherin, the delTM and delGPI mutants only moderately inhibited PFV production. In contrast, the dimerization and glycosylation deficient mutants inhibit PFV production as efficiently as the wild type tetherin.ConclusionsThese results demonstrate that tetherin inhibits the release and infectivity of PFV, and this inhibition is antagonized by HIV-1 Vpu. Both the transmembrane domain and the GPI anchor of tetherin are important for the inhibition of PFV, whereas the dimerization and the glycosylation of tetherin are dispensable.


Experimental Cell Research | 2005

Activation of c-Jun N-terminal kinase (JNK) pathway by HSV-1 immediate early protein ICP0.

Lirong Diao; Bianhong Zhang; Chenghao Xuan; Shaogang Sun; Kai Yang; Yujie Tang; Wentao Qiao; Qimin Chen; Yunqi Geng; Chen Wang

Abstract The immediate early protein ICP0 encoded by herpes simplex virus 1 (HSV-1) is believed to activate transcription and consequently productive infection. The precise mechanisms of ICP0-mediated transactivation are under intensive study. Here, we demonstrate that ICP0 can strongly activate AP-1 responsive genes specifically. This activation is inhibited by c-Jun (S73A), c-Jun (S63/73A), TAK1 (K63W), but not by p38 (AF), ERK1 (K71R), ERK2 (K52R) and TRAF6 (C85A/H87A). We further investigate the relevancy of ERK, JNK and p38 MAPK pathways using their respective inhibitors PD98059, SP600125 and SB202190. Only SP600125 significantly attenuates the AP-1 responsive gene activation by ICP0. Consistent with these, the JNK is remarkably activated in response to ICP0, and this JNK activation is shown to be significantly attenuated by TAK1 (K63W). It turns out that ICP0 interacts specifically with TAK1 and stimulates its kinase activity. These findings reveal a new molecular mechanism ICP0 explores to regulate gene expression.


Retrovirology | 2014

HIV-1 Vpr stimulates NF-κB and AP-1 signaling by activating TAK1

Ruikang Liu; Yongquan Lin; Rui Jia; Yunqi Geng; Chen Liang; Juan Tan; Wentao Qiao

BackgroundThe Vpr protein of human immunodeficiency virus type 1 (HIV-1) plays an important role in viral replication. It has been reported that Vpr stimulates the nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) signaling pathways, and thereby regulates viral and host cell gene expression. However, the molecular mechanism behind this function of Vpr is not fully understood.ResultsHere, we have identified transforming growth factor-β-activated kinase 1 (TAK1) as the important upstream signaling molecule that Vpr associates with in order to activate NF-κB and AP-1 signaling. HIV-1 virion-associated Vpr is able to stimulate phosphorylation of TAK1. This activity of Vpr depends on its association with TAK1, since the S79A Vpr mutant lost interaction with TAK1 and was unable to activate TAK1. This association allows Vpr to promote the interaction of TAB3 with TAK1 and increase the polyubiquitination of TAK1, which renders TAK1 phosphorylation. In further support of the key role of TAK1 in this function of Vpr, knockdown of endogenous TAK1 significantly attenuated the ability of Vpr to activate NF-κB and AP-1 as well as the ability to stimulate HIV-1 LTR promoter.ConclusionsHIV-1 Vpr enhances the phosphorylation and polyubiquitination of TAK1, and as a result, activates NF-κB and AP-1 signaling pathways and stimulates HIV-1 LTR promoter.

Collaboration


Dive into the Wentao Qiao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge