Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenting Zhao is active.

Publication


Featured researches published by Wenting Zhao.


International Journal of Molecular Sciences | 2014

TRPV1 activation exacerbates hypoxia/reoxygenation-induced apoptosis in H9C2 cells via calcium overload and mitochondrial dysfunction.

Zewei Sun; Jie Han; Wenting Zhao; Yuanyuan Zhang; Shuai Wang; Lifang Ye; Tingting Liu; Liangrong Zheng

Transient potential receptor vanilloid 1 (TRPV1) channels, which are expressed on sensory neurons, elicit cardioprotective effects during ischemia reperfusion injury by stimulating the release of neuropeptides, namely calcitonin gene-related peptide (CGRP) and substance P (SP). Recent studies show that TRPV1 channels are also expressed on cardiomyocytes and can exacerbate air pollutant-induced apoptosis. However, whether these channels present on cardiomyocytes directly modulate cell death and survival pathways during hypoxia/reoxygenation (H/R) injury remains unclear. In the present study, we investigated the role of TRPV1 in H/R induced apoptosis of H9C2 cardiomyocytes. We demonstrated that TRPV1 was indeed expressed in H9C2 cells, and activated by H/R injury. Although neuropeptide release caused by TRPV1 activation on sensory neurons elicits a cardioprotective effect, we found that capsaicin (CAP; a TRPV1 agonist) treatment of H9C2 cells paradoxically enhanced the level of apoptosis by increasing intracellular calcium and mitochondrial superoxide levels, attenuating mitochondrial membrane potential, and inhibiting mitochondrial biogenesis (measured by the expression of ATP synthase β). In contrast, treatment of cells with capsazepine (CPZ; a TRPV1 antagonist) or TRPV1 siRNA attenuated H/R induced-apoptosis. Furthermore, CAP and CPZ treatment revealed a similar effect on cell viability and mitochondrial superoxide production in primary cardiomyocytes. Finally, using both CGRP8–37 (a CGRP receptor antagonist) and RP67580 (a SP receptor antagonist) to exclude the confounding effects of neuropeptides, we confirmed aforementioned detrimental effects as TRPV1−/− mouse hearts exhibited improved cardiac function during ischemia/reperfusion. In summary, direct activation of TRPV1 in myocytes exacerbates H/R-induced apoptosis, likely through calcium overload and associated mitochondrial dysfunction. Our study provides a novel understanding of the role of myocyte TRPV1 channels in ischemia/reperfusion injury that sharply contrasts with its known extracardiac neuronal effects.


Journal of Diabetes and Its Complications | 2015

Nerve growth factor rescues diabetic mice heart after ischemia/reperfusion injury via up-regulation of the TRPV1 receptor.

Liangrong Zheng; Yuanyuan Zhang; Jie Han; Zewei Sun; Shi-Xian Zhou; Wenting Zhao; Lihong Wang

AIMS Nerve growth factor (NGF), a member of the neurotrophin family, plays an essential role in diabetic neuropathy and ischemic heart disease. In the present study, we explored the potential role of NGF and the involvement of TRPV1 receptor in isolated diabetic mouse hearts following ischemia/reperfusion (I/R) injury. METHODS Adenovirus-mediated NGF gene delivery was performed on diabetic and sham hearts 8weeks after streptozotocin treatment. The sciatic nerve conduction velocity was recorded using a biological signal acquisition system. Forty-eight hours after heart surgery, mice were subjected to I/R injury using a Langendorff system. Several cardiac parameters and the expression of associated molecules were analyzed during the experiment. RESULTS The sciatic nerve conduction velocity was reduced in diabetic mice compared with that in control mice. Decreased expression of NGF, TRPV1, and the downstream neurotransmitters CGRP and SP was observed in the diabetic hearts. Adenovirus-mediated NGF overexpression reversed the reduction in TRPV1 and downstream neuropeptides, resulting in improved cardiac recovery post-I/R injury in diabetic hearts. The protective effect of NGF was abolished by CGRP8-37 (a selective CGRP antagonist), while it was preserved by low-dose capsaicin. CONCLUSIONS The NGF-induced up-regulation of TRPV1 via the increased synthesis and release of endogenous CGRP leads to improved cardiac performance in I/R-injured diabetic heart.


Inflammation | 2015

Wnt1 Participates in Inflammation Induced by Lipopolysaccharide Through Upregulating Scavenger Receptor A and NF-kB

Wenting Zhao; Zewei Sun; Shuai Wang; Zhenwei Li; Liangrong Zheng

The study investigated the role of wnt1 in the inflammatory response initiated by lipolysaccharide (LPS), and analyzed the association between wnt1, NF-KB, and inflammatory factors. THP-1 cells were activated with phorbol-12-myristate-13-acetate (PMA) and treated with LPS to induce inflammation. THP-1 cells were transfected with wnt1siRNA and overexpression plasmid to explore the relationship among wnt1, SRA, and NF-KB. Inhibitor of β-catenin and siRNA of FZD1were used to investigate the signaling events involved in SRA activation induced by wnt1. Levels of NF-kB protein and inflammatory cytokines were assessed followingwnt1 siRNA and LPS treatment. PMA activation and LPS treatment of THP-1 cells increased wnt1 protein levels. Wnt1 promoted SRA expression through activation of canonical wnt pathway. Wnt1 increased NF-kB protein levels and enhanced the secretion of IL-6, TNF-α, and iNOS through binding to SRA. These findings suggest that wnt1 increased SRA and NF-kB protein levels and participated in the inflammatory response.


Cellular Physiology and Biochemistry | 2015

Wnt1 positively regulates CD36 expression via TCF4 and PPAR-γ in macrophages.

Shuai Wang; Zewei Sun; Xi Zhang; Zhenwei Li; Mingjie Wu; Wenting Zhao; Houhong Wang; Ting Chen; Hui Yan; Jianhua Zhu

Background: Scavenger receptors including CD36 control the phagocytosis of oxidized low-density lipoprotein and play an important role in macrophage physiology, but the underlying molecular mechanism by which CD36 is regulated in macrophages or during macrophage differentiation from monocytes remains to be determined. Methods: Here, we investigated the relationship between Wnt1 and CD36 during macrophage differentiation. CD36 was suppressed following knockdown of Wnt1 by siRNA, while it was increased by ectopic overexpression of Wnt1 in macrophages. Using a β-catenin inhibitor, peroxisome proliferator-activated receptor gamma (PPAR-γ) siRNA, and transcription factor 4 (TCF4) siRNA, we demonstrated that Wnt1 regulates the expression of CD36 through TCF4 and PPAR-γ. Co-immunoprecipitation, chromatin immunoprecipitation, and immunofluorescence experiments showed that β-catenin interacted with PPAR-γ and that PPAR-γ and TCF4 colocalized in the nucleus. Furthermore, Pax3 regulated Wnt1 via binding to the first binding site in the Wnt1 promoter. Results: Our study demonstrated that during macrophage differentiation from monocytes, Wnt1 promotes CD36 expression via activation of PPAR-γ and TCF4. Conclusions: Our findings suggest that Wnt1 plays an important role in macrophage physiology via activation of the canonical Wnt pathway.


Basic Research in Cardiology | 2016

Cross-talk between macrophages and atrial myocytes in atrial fibrillation

Zewei Sun; Dongchen Zhou; Xudong Xie; Shuai Wang; Zhen Wang; Wenting Zhao; Hongfei Xu; Liangrong Zheng

Increased macrophage accumulation occurs in the atria of patients with atrial fibrillation (AF). However, the phenotype and functions of the macrophages in AF remain unclear. We investigated the macrophage-atrial myocyte interaction in AF patients and found that the increased macrophages were mainly pro-inflammatory macrophages (iNOS+, Arg1−). Tachypacing of HL-1 atrial myocytes also led to pro-inflammatory macrophage polarization. In addition, lipopolysaccharide (LPS)-stimulated pro-inflammatory macrophages-induced atrial electrical remodeling, evidenced by increased AF incidence and decreased atrial effective refractory period and L-type calcium currents (ICa-L) in both canine and mouse AF models. Depletion of macrophages relieved LPS-induced atrial electrical remodeling, confirming the role of pro-inflammatory macrophages in the pathogenesis of AF. We also found that the effect of LPS-stimulated macrophages on atrial myocytes was mediated by secretion of interleukin 1 beta (IL-1β), which inhibited atrial myocyte quaking protein (QKI) expression. IL-1β knockout in macrophages restored the LPS-stimulated macrophage-induced inhibition of QKI and CACNA1C (α1C subunit of L-type calcium channel) in atrial myocytes. Meanwhile, QKI overexpression in atrial myocytes restored the LPS-stimulated macrophage-induced electrical remodeling through enhanced binding of QKI to CACNA1C mRNA, which upregulated the expression of CACNA1C as well as ICa-L. In contrast, QKI knockout inhibited CACNA1C expression. Finally, using transcription factor activation profiling plate array and chromatin immunoprecipitation, we revealed that special AT-rich sequence binding protein 1 activated QKI transcription. Taken together, our study uncovered the functional interaction between macrophages and atrial myocytes in AF. AF induced pro-inflammatory macrophage polarization while pro-inflammatory macrophages exacerbated atrial electrical remodeling by secreting IL-1β, further inhibiting QKI expression in atrial myocytes, which contributed to ICa-L downregulation. Our study demonstrates a novel molecular mechanism underlying the pathogenesis and progression of AF and suggests that QKI is a potential therapeutic target.


International Journal of Molecular Medicine | 2016

Upregulation of miRNA-155 expression by OxLDL in dendritic cells involves JAK1/2 kinase and transcription factors YY1 and MYB

Hui Yan; Shuai Wang; Zhenwei Li; Wenting Zhao; Zhen Wang; Zewei Sun; Yanyun Pan; Jianhua Zhu

Dendritic cells (DCs) have been implicated in the pathogenesis of atherosclerosis (AS). Whereas the pathogenic role of oxidized low-density lipoprotein (oxLDL) in the development and progression of AS has been recognized previously, the contribution of microRNA-155 (miR-155) to AS was previously not fully understood. It had also been noted that miR-155 levels were upregulated by oxLDL in various cell types under different (patho)physiological conditions, but its underlying mechanisms had not been examiend in detail. Thus, in the present study, we observed that oxLDL treatment increased miR-155 expression in DCs, and transfecting DCs with siRNA against scavenger receptor A (SRA) revealed that repression of SRA attenuated this upregulation. We also noted that miR-155 negatively regulated SRA expression by suppressing the JNK pathway. Furthermore, we noted that Yin Yang 1 (YY1) and V-Myb avian myeloblastosis viral oncogene homolog (MYB), which were also upregulated by oxLDL, directly bound to the cognate sequences of the promoter region of miR-155 to activate its transcription. In addition, using SP600125, a specific inhibitor for c-Jun N-terminal kinase (JNK) signaling, we demonstrated that JNK signaling was involved in the miR‑155-mediated suppression of SRA expression. Thus, in the present study we uncovered the molecular mechanism through which miR-155 expression is regulated by oxLDL, and we also identified a negative feedback loop, miR‑155-JNK-SRA-miR-155. Our findings thus provide novel insights into the regulatory network underlying the expression and activity of miR-155 in DCs.


Journal of Atherosclerosis and Thrombosis | 2017

Beta-adrenoceptor Activation by Norepinephrine Enhances Lipopolysaccharide-induced Matrix Metalloproteinase-9 Expression Through the ERK/JNK-c-Fos Pathway in Human THP-1 Cells

Xiang Yin; Linli Zhou; Fei Han; Jie Han; Yuanyuan Zhang; Zewei Sun; Wenting Zhao; Zhen Wang; Liangrong Zheng

Aim: Atherosclerosis is a chronic inflammatory disease, which leads to thrombosis and acute coronary syndrome. Matrix metalloproteinase-9 (MMP-9) is involved in the stability of the extracellular matrix (ECM) and atherosclerosis plaque. Until now, it is established that lipopolysaccharide (LPS) and norepinephrine (NE) are associated with the pathological process of atherosclerosis. However, the combined effect of LPS and NE on MMP-9 is unclear. We investigated the combined effect of LPS and NE on MMP-9 expression in human monocytes and the mechanism involved in the process. Methods: THP-1 cells were cultured and treated with LPS and/or NE. MMP-9 and TIMP-1 gene and protein expression were detected by real time PCR and ELISA, respectively. MMP-9 activity was detected by gelatin zymography. Adrenoceptor antagonists and MAPKs inhibitors were used to clarify the mechanism. Pathway-related proteins were detected by Western blot. Results: We found that NE enhances LPS-induced MMP-9 and TIMP-1 expression as well as MMP-9 activity in THP-1 cells. This effect is reversed by the beta (β)-adrenoceptor antagonist propranolol, extracellular signal-regulated kinases (ERK) inhibitor U0126, and c-Jun N-terminal kinase (JNK) inhibitor SP600125. NE enhances LPS-induced ERK/JNK phosphorylation. NE up-regulates LPS-induced c-Fos expression, which is counteracted by propranolol, U0126, and SP600125. Furthermore, c-Fos silence reverses the effect of NE on MMP-9 activity. Conclusions: Our results suggest that NE enhances LPS-induced MMP-9 expression through β-adrenergic receptor and downstream ERK/JNK-c-Fos pathway. This study may help us to understand the combined effect and mechanism of NE/LPS on MMP-9 expression.


Molecular Medicine Reports | 2016

Oxidized low‑density lipoprotein upregulates microRNA‑146a via JNK and NF‑κB signaling

Zhenwei Li; Shuai Wang; Wenting Zhao; Zewei Sun; Hui Yan; Jianhua Zhu

Increasing evidence suggested the involvement of microRNA (miR)-146a in the pathogenesis of multiple diseases, including atherosclerosis, bacterial infection and cancer. However, the mechanism by which miR-146a is regulated in macrophages exposed to oxidized low-density lipoprotein (oxLDL) has remained elusive. The present study aimed to explore the molecular pathway of miR-146a regulation in response to oxLDL. Human THP-1 macrophages were pre-treated with small interfering RNA specific for scavenger receptors or with pharmacological inhibitors prior to oxLDL administration. A filter plate screening assay was performed to identify oxLDL-inducible transcription factors that bind to the miR-146a promoter. The exact binding sites were mapped by chromatin immunoprecipitation. The effects of miR-146a on markers of macrophage maturation were studied by flow cytometry. The results revealed that miR-146a expression was deceased when c-jun N-terminal kinase (JNK) or nuclear factor (NF)-κB signaling was inhibited. By forming a complex with c-jun, which was promoted by oxLDL, the NF-κB sub-unit p65 facilitated the binding of c-jun to the miR-146a promoter to trigger transcriptional activation. miR-146a negatively regulated macrophage maturation by reducing the expression of CD86 and CD80. The present study demonstrated that oxLDL positively regulates miR-146a via the JNK and NF-κB pathways in macrophages, and that miR-146a inhibits inflammatory activation.


Molecular Medicine Reports | 2016

Rspo2 suppresses CD36-mediated apoptosis in oxidized low density lipoprotein-induced macrophages

Hui Yan; Shuai Wang; Zhenwei Li; Zewei Sun; Jie Zan; Wenting Zhao; Yanyun Pan; Zhen Wang; Mingjie Wu; Jianhua Zhu

Oxidized low density lipoprotein (oxLDL)-induced apoptosis of macrophages contributes to the formation of atherosclerotic plaques. R-spondin 2 (Rspo2), a member of the cysteine-rich secreted proteins, has been shown to be involved in the oncogenesis of several types of cancer. It has also been found to be abundantly expressed among the four R-spondin members in macrophages. The present study was performed to determine whether Rspo2 is involved in the ox-LDL-induced apoptosis of macrophages. It was identified that Rspo2 inhibited oxLDL-induced apoptosis in the presence of endoplasmic reticulum (ER) stress activator using flow cytometry. In addition, Rspo2 was observed to suppress oxLDL-induced ER stress and reactive oxygen species production as demonstrated by western blotting. Furthermore, analysis of the role of Rspo2 in macrophage lipid uptake identified that Rspo2 negatively regulated the Dil-oxLDL uptake by inhibiting the expression of cluster of differentiation (CD)36, through the transcription factor, peroxisome proliferator-activated receptor (PPAR)-γ. The manipulation of Rspo2 had a direct effect on PPAR-γ nuclear translocation. In addition, chromatin immunoprecipitation analysis revealed that Rspo2 manipulation led to regulation of the direct binding between PPAR-γ and CD36. In conclusion, Rspo2 was found to have a negative regulatory effect during oxLDL-induced macrophage apoptosis by regulating lipid uptake.


Experimental Cell Research | 2018

RNA helicase DDX5 participates in oxLDL-induced macrophage scavenger receptor 1 expression by suppressing mRNA degradation

Wenting Zhao; Zhen Wang; Zewei Sun; Yuxian He; Dongdong Jian; Xiaotong Hu; Wang Zhang; Liangrong Zheng

ABSTRACT The DEAD box protein DDX5, an ATP‐dependent RNA helicase, plays an important role in transcriptional regulation and is associated with solid tumors and leukemia. However, its role in oxLDL‐induced lipid uptake in macrophages remains unclear. In this study, we detected the expression of DDX5 mRNA and protein in oxidized low‐density lipoprotein (oxLDL)‐treated human primary macrophages that were induced from monocytes isolated from human peripheral blood with or without several chemical inhibitors using quantitative real‐time PCR (qRT‐PCR) or Western blotting. We found that oxLDL induced DDX5 expression to be independent of both the MAPK and NF‐&kgr;B pathways. We also found that DDX5 promoted macrophage lipid uptake by evaluating the fluorescence intensity of engulfed dil‐oxLDL. Various scavenger receptors that participate in lipid uptake were detected in siR‐DDX5 transfected macrophages using qRT‐PCR and Western blotting. Macrophage scavenger receptor A (MSR1) was found to be involved the upregulation of DDX5‐mediated lipid uptake. Through the use of a dual luciferase reporter assay system and incubation with cycloheximide (CHX) MG132 and actidione (ActD), we found that DDX5 promoted MSR1 protein expression by stabilizing MSR1 mRNA. Moreover, the mechanism involved in DDX5 regulation of MSR1 mRNA was also explored using mass spectrum analysis; Immunoprecipitations (IPs) and RNA‐ Immunoprecipitations (R‐IPs) revealed that mettl3 was involved in DDX5‐mediated MSR1 mRNA stabilization. In addition, we also demonstrated that DDX5 inhibited mettl3 to catalyze m6a methylation in MSR1 mRNA, which contributed to the maintenance of MSR1 mRNA stability. In conclusion, ox‐LDL promotes DDX5 expression in macrophages, which interacts with mettl3 to stabilize MSR1 mRNA by decreasing the m6a modification of MSR1 mRNA, ultimately promoting lipid uptake in macrophages. HighlightsRNA helicase DDX5 positively regulates macrophage lipid uptake.Macrophages scavenger receptor 1(MSR1) mRNA is stabilized by DDX5.The m6a modification of MSR1 mRNA was regulated by interaction of mettl3 and DDX5.Degradation of MSR1 mRNA was suppressed by m6a modification on mRNA.

Collaboration


Dive into the Wenting Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge