Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenxiang Fang is active.

Publication


Featured researches published by Wenxiang Fang.


American Journal of Respiratory and Critical Care Medicine | 2014

Effects of a Functional Variant c.353T>C in Snai1 on Risk of Two Contextual Diseases. Chronic Obstructive Pulmonary Disease and Lung Cancer

Lei Yang; Xiaorong Yang; Weidong Ji; Jieqiong Deng; Fuman Qiu; Rongrong Yang; Wenxiang Fang; Lisha Zhang; Dongsheng Huang; Chenli Xie; Haibo Zhang; Nanshan Zhong; Pixin Ran; Yifeng Zhou; Jiachun Lu

RATIONALE Epithelial-mesenchymal transition (EMT) plays a key role in the development of chronic obstructive pulmonary disease (COPD) and lung cancer. OBJECTIVES There are five major EMT regulatory genes (Snai1, Slug, Zeb1, Zeb2, and Twist1) involved in EMT. We hypothesized that germline variants in these genes may influence the development of both diseases. METHODS Seven genetic variants were genotyped in two two-stage case-control studies with 2,072 lung cancer cases and 2,077 control subjects, and 1,791 patients with COPD and 1,940 control subjects to show their associations with development of both diseases. MEASUREMENTS AND MAIN RESULTS An exon variant c.353T>C(p.Val118Ala) of Snai1 harbored decreased risks of lung cancer (CT/CC vs. TT: odds ratio [OR], 0.76; 95% confidence interval [CI], 0.65-0.90) and COPD (CC vs. CT vs. TT: OR, 0.75; 95% CI, 0.63-0.89), and c.353T>C affected lung cancer risk indirectly through COPD (COPD accounted for 6.78% of effect that the variant had on lung cancer). Moreover, c.353T>C was correlated with lung cancer stages in smoking patients (P = 0.013), and those with the c.353C genotypes were less likely to have metastasis at diagnosis than those with the c.353TT genotype (OR, 0.60; 95% CI, 0.41-0.88). The c.353C allele encoding p.118Ala attenuated Snai1s ability to up-regulate mesenchymal biomarkers (i.e., fibronectin and vimentin) expression, and to promote EMT-like changes, including morphologic changes, cell migration, and invasion. However, these effects were not observed for the other variants. CONCLUSIONS The functional germline variant c.353T>C (p.Val118Ala) of Snai1 confers consistently decreased risks of lung cancer and COPD, and this variant affects lung cancer risk through a mediation effect of COPD.


Gene | 2015

Polymorphism in mature microRNA-608 sequence is associated with an increased risk of nasopharyngeal carcinoma

Fuman Qiu; Lei Yang; Lisha Zhang; Xiaorong Yang; Rongrong Yang; Wenxiang Fang; Di Wu; Jiansong Chen; Chenli Xie; Dongsheng Huang; Yifeng Zhou; Jiachun Lu

Accumulative evidences indicated that microRNAs (miRNAs) can function as tumor suppressors and oncogenes, in which genetic variations are implicated in various cancer susceptibilities. However, it remains unclear whether single nucleotide polymorphisms (SNPs) in mature miRNA sequence alter nasopharyngeal carcinoma (NPC) susceptibility. In this study, we analyzed associations between eight SNPs in miRNA mature sequences (i.e., rs3746444T>C in hsa-mir-499, rs4919510C>G in hsa-mir-608, rs13299349G>A in hsa-mir-3152, rs12220909G>C in hsa-mir-4293, rs2168518G>A in hsa-mir-4513, rs8078913T>C in hsa-mir-4520a, rs11237828T>C in hsa-mir-5579, and rs9295535T>C in hsa-mir-5689) and NPC susceptibility in southern China with 906 NPC cases and 1072 cancer-free controls, and validated the significant findings in eastern China with 684 cases and 907 healthy controls. Functional assays were further performed to identify the biological effects of these polymorphisms. We found that rs4919510C>G polymorphism showed a consistent association with NPC risk in southern China (GC+GG versus CC genotype, odds ratio [OR]=1.36, 95% confidence interval [CI]=1.10-1.70) and eastern China (GC+GG versus CC: OR=1.37, 95% CI=1.08-1.74). After the two populations were merged, the ORs and 95% CI were 1.38 and 1.18 to 1.62, respectively. Moreover, the rs4919510C>G adverse genotypes significantly interacted with Epstein-Barr virus (EBV) infection on increasing NPC risk (P=0.001). The functional assay further showed that the CNE-2 cell lines that transfected with miR-608-rs4919510G allele expression vector exerted more colony number formations than cell lines that transfected with miR-608-rs4919510C allele expression vector (P=0.001). These data suggested that rs4919510C>G of miR-608 may be a susceptible biomarker of NPC in China.


European Journal of Human Genetics | 2015

Duplicated copy of CHRNA7 increases risk and worsens prognosis of COPD and lung cancer

Lei Yang; Xiaoxiao Lu; Fuman Qiu; Wenxiang Fang; Lisha Zhang; Dongsheng Huang; Chenli Xie; Nanshan Zhong; Pixin Ran; Yifeng Zhou; Jiachun Lu

Recent genome-wide association studies implicated that the nicotinic acetylcholine receptors (nAChRs) are common susceptible genes of two contextual diseases: chronic obstructive pulmonary disease (COPD) and lung cancer. We aimed to test whether the copy number variations (CNVs) in nAChRs have hereditary contributions to development of the two diseases. In two, two-stage, case–control studies of southern and eastern Chinese, a common CNV-3956 that duplicates the cholinergic receptor, nicotinic, α7 (CHRNA7) gene was genotyped in a total of 7880 subjects and its biological phenotype was assessed. The ≥4-copy of CNV-3956 increased COPD risk (≥4-copy vs 2/3-copy: OR=1.44, 95% CI=1.23–1.68) and caused poor lung function, and it similarly augmented risk (OR=1.49, 95% CI=1.29–1.73) and worsened prognosis (hazard ratio (HR)=1.25, 95% CI=1.07–1.45) of lung cancer. The ≥4-copy was estimated to account for 1.56% of COPD heritability and 1.87% of lung cancer heritability, respectively. Phenotypic analysis further showed that the ≥4-copy of CNV-3956 improved CHRNA7 expression in vivo and increased the carriers’ smoking amount. The CNV-3956 of CHRNA7 contributed to increased risks and poor prognoses of both COPD and lung cancer, and this may be a genetic biomarker of the two diseases.


Mutation Research | 2014

The functional polymorphism of NBS1 p.Glu185Gln is associated with an increased risk of lung cancer in Chinese populations: Case-control and a meta-analysis

Wenxiang Fang; Fuman Qiu; Lisha Zhang; Jieqiong Deng; Haibo Zhang; Lei Yang; Yifeng Zhou; Jiachun Lu

NBS1 plays pivotal roles in maintaining genomic stability and cancer development. The exon variant rs1805794G>C (p.Glu185Gln) of NBS1 has been frequently studied in several association studies. However, the results were conflicting. Also, the function of this variant has never been well studied. In the current study, we performed a two centers case-control study and function assays to investigate the effect of the variant rs1805794G>C on lung cancer risk in Chinese, and a meta-analysis to summarize the data on the association between rs1805794G>C and cancer risk. We found that compared with the rs1805794GG genotype, the C genotypes (CG/CC) conferred a significantly increased risk of lung cancer in Chinese (OR=1.40, 95% CI=1.21-1.62) and interacted with medical ionizing radiation exposure on increasing cancer risk (Pinteraction=0.015). The lymphocyte cells from the C genotype individuals developed more chromatid breaks than those from the GG genotype carriers after the X-ray radiation (P=0.036). Moreover, the rs1805794C allele encoding p.185Gln attenuated NBS1s ability to repair DNA damage as the cell lines transfected with NBS1 cDNA expression vector carrying rs1805794C allele had significantly higher DNA breaks than those transfected with NBS1 cDNA expression vector carrying rs1805794G allele (P<0.05). The meta-analysis further confirmed the association between the variant rs1805794G>C and lung cancer risk, that compared with the GG genotype, the carriers of C genotypes had a 1.30-fold risk of cancer (95% CI=1.14-1.49, P=8.49×10(-5)). These findings suggest that the rs1805794G>C of NBS1 may be a functional genetic biomarker for lung cancer.


Mutagenesis | 2013

A functional polymorphism in the promoter of ERK5 gene interacts with tobacco smoking to increase the risk of lung cancer in Chinese populations

Fuman Qiu; Lei Yang; Wenxiang Fang; Yinyan Li; Rongrong Yang; Xiaorong Yang; Jieqiong Deng; Binfang Huang; Chenli Xie; Yifeng Zhou; Jiachun Lu

Mitogen/extracellular signal-regulated kinase-5 (MEK5)/extracellular signal-regulated protein kinase-5 (ERK5) pathway plays a pro-oncogenic role in tumourigenesis by anticell apoptosis, promoting cell proliferation and differentiation in response to extracellular stimuli. As overexpressed MEK5/ERK5 is involved in the development of lung cancer, we hypothesised that the single nucleotide polymorphisms (SNPs) in MEK5 and ERK5 genes may influence gene expression and thus be associated with lung cancer risk. Five putative functional polymorphisms (rs3743353T>C, rs7172582C>T and rs2278076A>G of MEK5 and rs3866958G>T and rs2233083C>T of ERK5) were genotyped in two independent case-control studies with a total of 1559 lung cancer patients and 1679 controls in southern and eastern Chinese population. We found the rs3866958G>T of ERK5 was significantly associated with lung cancer risk, while other SNPs were not. Compared with the rs3866958TG/TT genotypes, the GG genotype conferred an increased risk of lung cancer (odds ratio = 1.30, 95% confidence interval = 1.12-1.51, P = 5.0×10(-4)), and this effect was more pronounced in smokers, accompanying with a significant interaction with smoking (P interaction = 0.013). The GG genotype also had significant higher mRNA levels of ERK5 in lung cancer tissues than TG/TT genotypes (P = 1.0×10(-4)); the luciferase reporter with the G allele showed significant higher transcription activities than the T allele, especially after the treatment with tobacco extract in vitro. Our data indicated that the functional polymorphism rs3866958G>T in ERK5 was associated with an increased lung cancer risk in smokers by virtue of the positive interaction with smoking on promoting the ERK5 expression, which might be a valuable indicator for predicting lung cancer risk in smokers.


COPD: Journal of Chronic Obstructive Pulmonary Disease | 2015

The Functional Copy Number Variation-67048 in WWOX Contributes to Increased Risk of COPD in Southern and Eastern Chinese

Lei Yang; Fuman Qiu; Wenxiang Fang; Lisha Zhang; Chenli Xie; Xiaoxiao Lu; Dongsheng Huang; Yuan Guo; Mingan Pan; Haibo Zhang; Yifeng Zhou; Jiachun Lu

Abstract Recent studies have recognized the genetic variants in the WW domain-containing oxidoreductase (WWOX) gene as genetic determinants of lung function, reflecting that the WWOX gene may be a susceptible factor of chronic obstructive pulmonary disease (COPD), which characters as poor lung function. We have previously showed that the copy number variation-67048 (CNV-67048) of WWOX was associated with lung cancer risk. Here, we hypothesized that the CNV-67048 affects COPD susceptibility. Based on a two-stage case-control study with a total of 1791 COPD patients and 1940 controls of southern and eastern Chinese, we found that the loss genotypes (0-copy and 1-copy) of CNV-67048 harbored a significantly increased risk of COPD, with an odds ratio (OR) as 1.29 (1.11–1.49) when compared with the common 2-copy genotype. The pre-forced expiratory volume in one second (pre-FEV1) to pre-forced vital capacity (pre-FVC) of carriers with loss genotypes (0.729 ± 0.130) was significantly lower than carriers with 2-copy genotype (0.747 ± 0.124; p = 7.93 × 10−5). However, no significant difference was observed on pre-FEV1, pre-FVC and the annual decline of pre-FEV1 between the loss genotypes and 2-copy genotype carriers. Our data suggest that the loss genotypes of CNV-67048 in WWOX predispose their carriers to COPD, which might be a genetic biomarker to predict risk of COPD in Chinese.


Mutagenesis | 2014

Genetic variant in the 3'-untranslated region of VEGFR1 gene influences chronic obstructive pulmonary disease and lung cancer development in Chinese population

Hui Wang; Lei Yang; Jieqiong Deng; Bo Wang; Xiaorong Yang; Rongrong Yang; Mei Cheng; Wenxiang Fang; Fuman Qiu; Xin Zhang; Weidong Ji; Pixin Ran; Yifeng Zhou; Jiachun Lu

Lung inflammation and epithelial to mesenchymal transition (EMT) are two pathogenic features for the two contextual diseases: chronic obstructive pulmonary disease (COPD) and lung cancer. VEGFR1 (or FLT1) plays a certain role in promoting tumour growth, inflammation and EMT. To simultaneously test the association between the single nucleotide polymorphisms (SNPs) in VEGFR1 and risk of COPD and lung cancer would reveal genetic mechanisms shared by these two diseases and joint aetiology. We conducted a two-population hospital-based case-control study. Three potential functional SNPs (rs664393, rs7326277 and rs9554314) were genotyped in southern Chinese and validated in eastern Chinese to explore their associations with COPD risk in 1511 COPD patients and 1677 normal lung function controls, and with lung cancer risk in 1559 lung cancer cases and 1679 cancer-free controls. We also detected the function of the promising SNP. Individuals carrying the rs7326277C (CT+CC) variant genotypes of VEGFR1 had a significant decrease in risk of both COPD (OR = 0.78; 95% CI = 0.68-0.90) and lung cancer (OR = 0.79; 95% CI = 0.64-0.98), compared with those carrying the rs7326277TT genotype. Functional assays further showed that the rs7326277C genotypes had lower transcriptional activity and caused decreased VEGFR expression, compared with the rs7326277TT genotype. However, no significant association was observed for the other two SNPs (rs664393 and rs9554314) and either COPD or lung cancer risk. Our data suggested that the rs7326277C variant of VEGFR1 could reduce both COPD and lung cancer risk by lowering VEGFR1 mRNA expression; the SNP might be a common susceptible locus for both COPD and lung cancer.


PLOS ONE | 2014

A Newfound Association between MDC1 Functional Polymorphism and Lung Cancer Risk in Chinese

Bo Wang; Lisha Zhang; Fuman Qiu; Wenxiang Fang; Jieqiong Deng; Yifeng Zhou; Jiachun Lu; Lei Yang

Mediator of DNA damage checkpoint protein 1 (MDC1) plays an early and core role in Double-Strand Break Repair (DDR) and ataxia telangiectasia-mutated (ATM) mediated response to DNA double-strand breaks (DSBs), and thus involves the pathogenesis of several DNA damage-related diseases such as cancer. We hypothesized that the single nucleotide polymorphisms (SNPs) of MDC1 which have potencies on affecting MDC1 expression or function were associated with risk of lung cancer. In a two-stage case-control study, we tested the association between 5 putatively functional SNPs of MDC1 and lung cancer risk in a southern Chinese population, and validated the promising association in an eastern Chinese population. We found the SNP rs4713354A>C that is located in the 5′-untranslated region of MDC1 was significantly associated with lung cancer risk in both populations (P = 0.024), with an odds ratio as 1.23(95% confidence interval  = 1.35–1.26) for the rs4713354C (CA+CC) genotypes compared to the rs4713354AA genotype. However, no significant association was observed between other SNPs and lung cancer risk. The gene-based analysis rested with these SNPs suggested the MDC1 as a susceptible gene for lung cancer (P = 0.009). Moreover, by querying the gene expression database, we further found that the rs4713354C genotypes confer a significantly lower mRNA expression of MDC1 than the rs4713354AA genotype in 260 cases of lymphoblastoid cells (P = 0.002). Our data suggested that the SNP rs4713354A>C of MDC1 may be a functional genetic biomarker for susceptibility to lung cancer in Chinese.


BioMed Research International | 2015

Polymorphisms of NFκB1 and IκBα and Their Synergistic Effect on Nasopharyngeal Carcinoma Susceptibility

Yehua Liu; Fuman Qiu; Lei Yang; Rongrong Yang; Xiaorong Yang; Dongsheng Huang; Wenxiang Fang; Lisha Zhang; Qingping Jiang; Lan Zhang; Yifeng Zhou; Jiachun Lu

Nasopharyngeal carcinoma (NPC) is a multifactoral and polygenic disease with high prevalence in Southeast Asia and Southern China. Environmental factors and genetic susceptibility play important roles in NPC pathogenesis. In the present study, we tested the hypothesis that single nucleotide polymorphisms (SNPs) in nuclear factor-kappa B (NFκB) and its inhibitor (IκBα) conferred consistent risks for NPC. Four putatively functional SNPs (NFκB1: rs28362491del>ins ATTG; NFκB2: rs12769316G>A; IκBα: rs2233406C>T and rs696G>A) were analyzed to evaluate their associations with NPC risk in total 1590 NPC cases and 1979 cancer-free controls. We found that the rs28362491 insATTG variants (ins/del + ins/ins) in NFκB1 conferred an increased risk of NPC (odds ratio [OR] = 1.30, 95% confidence interval [CI] = 1.09–1.55, and P = 2.80 × 10−3) compared with the del/del homozygous genotype. The rs696AA variant in IκBα had an increased risk of NPC (OR = 1.41, 95% CI = 1.20–1.66, and P = 2.28 × 10−5) by decreasing IκBα expression due to the modulation of microRNA hsa-miR-449a. Furthermore, both adverse genotypes of NFκB/IκBα and their interaction also exerted an increased risk on NPC. Taken together, Our findings indicated that genetic variants in NFκB1 (rs28362491del>ins ATTG) and IκBα (rs696G>A) and their synergistic effect might contribute to NPC predisposition.


PLOS ONE | 2013

Functional Genetic Polymorphisms in PP2A Subunit Genes Confer Increased Risks of Lung Cancer in Southern and Eastern Chinese

Rongrong Yang; Lei Yang; Fuman Qiu; Lisha Zhang; Hui Wang; Xiaorong Yang; Jieqiong Deng; Wenxiang Fang; Yifeng Zhou; Jiachun Lu

Protein phosphatase-2A (PP2A) is one of the major cellular serine-threonine phosphatases and functions as a tumor suppressor that negatively regulates the activity of some oncogenic kinases. Recent studies have reported that PP2A expression was suppressed during lung carcinogenesis, we there hypothesized that the single nucleotide polymorphisms (SNPs) in PP2A subunit genes may affect PP2A function and thus contribute to lung cancer susceptibility. In a two-stage case-control study with a total of 1559 lung cancer patients and 1679 controls, we genotyped eight putative functional SNPs and one identified functional SNP (i.e., rs11453459) in seven major PP2A subunits (i.e., PPP2R1A, PPP2R1B, PPP2CA, PPP2R2A, PPP2R2B, PPP2R5C, PPP2R5E) in southern and eastern Chinese. We found that rs11453459G (-G/GG) variant genotypes of PPP2R1A and the rs1255722AA variant genotype of PPP2R5E conferred increased risks of lung cancer (rs11453459, -G/GG vs. –: OR = 1.31, 95% CI = 1.13–1.51; rs1255722, AA vs. AG/GG: OR = 1.27, 95% CI = 1.07–1.51). After combined the two variants, the number of the adverse genotypes was positively associated with lung cancer risk in a dose-response manner (P trend  = 5.63×10−6). Further functional assay showed that lung cancer tissues carrying rs1255722AA variant genotype had a significantly lower mRNA level of PPP2R5E compared with tissues carrying GG/GA genotypes. However, such effect was not observed for the other SNPs and other combinations. Our findings suggested that the two functional variants in PPP2R1A and PPP2R5E and their combination are associated with lung cancer risk in Chinese, which may be valuable biomarkers to predict risk of lung cancer.

Collaboration


Dive into the Wenxiang Fang's collaboration.

Top Co-Authors

Avatar

Fuman Qiu

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Jiachun Lu

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Lei Yang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Lisha Zhang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Rongrong Yang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaorong Yang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Dongsheng Huang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Chenli Xie

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Pixin Ran

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Haibo Zhang

Guangdong Pharmaceutical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge