Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenyan Lu is active.

Publication


Featured researches published by Wenyan Lu.


The EMBO Journal | 2005

Sorting nexin 17 facilitates LRP recycling in the early endosome

Peter van Kerkhof; Jiyeon Lee; Lynn M. McCormick; Elena Tetrault; Wenyan Lu; Marissa J. Schoenfish; Viola Oorschot; Ger J. Strous; Judith Klumperman; Guojun Bu

The low‐density lipoprotein (LDL) receptor‐related protein (LRP) is a multiligand endocytic receptor and a member of the LDL receptor family. Here we show that sorting nexin 17 (Snx17) is part of the cellular sorting machinery that regulates cell surface levels of LRP by promoting its recycling. While the phox (PX) domain of Snx17 interacts with phosphatidylinositol‐3‐phosphate for membrane association, the FERM domain and the carboxyl‐terminal region participate in LRP binding. Immunoelectron microscopy shows that the membrane‐bound fraction of Snx17 is localized to the limiting membrane and recycling tubules of early endosomes. The NPxY motif, proximal to the plasma membrane in the LRP cytoplasmic tail, is identified as the Snx17‐binding motif. Functional mutation of this motif did not interfere with LRP endocytosis, but decreased LRP recycling from endosomes, resulting in increased lysosomal degradation. Similar effects are found after knockdown of endogenous Snx17 expression by short interfering RNA. We conclude that Snx17 binds to a motif in the LRP tail distinct from the endocytosis signals and promotes LRP sorting to the recycling pathway in the early endosomes.


PLOS ONE | 2011

Niclosamide Suppresses Cancer Cell Growth By Inducing Wnt Co-Receptor LRP6 Degradation and Inhibiting the Wnt/β-Catenin Pathway

Wenyan Lu; Cuihong Lin; Michael J. Roberts; William R. Waud; Gary A. Piazza; Yonghe Li

The Wnt/β-catenin signaling pathway is important for tumor initiation and progression. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for Wnt/β-catenin signaling and represents a promising anticancer target. Recently, the antihelminthic drug, niclosamide was found to inhibit Wnt/β-catenin signaling, although the mechanism was not well defined. We found that niclosamide was able to suppress LRP6 expression and phosphorylation, block Wnt3A-induced β-catenin accumulation, and inhibit Wnt/β-catenin signaling in HEK293 cells. Furthermore, the inhibitory effects of niclosamide on LRP6 expression/phosphorylation and Wnt/β-catenin signaling were conformed in human prostate PC-3 and DU145 and breast MDA-MB-231 and T-47D cancer cells. Moreover, we showed that the mechanism by which niclosamide suppressed LRP6 resulted from increased degradation as evident by a shorter half-life. Finally, we demonstrated that niclosamide was able to induce cancer cell apoptosis, and displayed excellent anticancer activity with IC50 values less than 1 µM for prostate PC-3 and DU145 and breast MDA-MB-231 and T-47D cancer cells. The IC50 values are comparable to those shown to suppress the activities of Wnt/β-catenin signaling in prostate and breast cancer cells. Our data indicate that niclosamide is a unique small molecule Wnt/β-catenin signaling inhibitor targeting the Wnt co-receptor LRP6 on the cell surface, and that niclosamide has a potential to be developed a novel chemopreventive or therapeutic agent for human prostate and breast cancer.


International Journal of Cancer | 2008

Breast cancer-derived Dickkopf1 inhibits osteoblast differentiation and osteoprotegerin expression: Implication for breast cancer osteolytic bone metastases

Guojun Bu; Wenyan Lu; Chia Chen Liu; Katri S. Selander; Toshiyuki Yoneda; Chris M. Hall; Evan T. Keller; Yonghe Li

Most breast cancer metastases in bone form osteolytic lesions, but the mechanisms of tumor‐induced bone resorption and destruction are not fully understood. Although it is well recognized that Wnt/β‐catenin signaling is important for breast cancer tumorigenesis, the role of this pathway in breast cancer bone metastasis is unclear. Dickkopf1 (Dkk1) is a secreted Wnt/β‐catenin antagonist. In the present study, we demonstrated that activation of Wnt/β‐catenin signaling enhanced Dkk1 expression in breast cancer cells and that Dkk1 overexpression is a frequent event in breast cancer. We also found that human breast cancer cell lines that preferentially form osteolytic bone metastases exhibited increased levels of Wnt/β‐catenin signaling and Dkk1 expression. Moreover, we showed that breast cancer cell‐produced Dkk1 blocked Wnt3A‐induced osteoblastic differentiation and osteoprotegerin (OPG) expression of osteoblast precursor C2C12 cells and that these effects could be neutralized by a specific anti‐Dkk1 antibody. In addition, we found that breast cancer cell conditioned media were able to block Wnt3A‐induced NF‐kappaB ligand reduction in C2C12 cells. Finally, we demonstrated that conditioned media from breast cancer cells in which Dkk1 expression had been silenced via RNAi were unable to block Wnt3A‐induced C2C12 osteoblastic differentiation and OPG expression. Taken together, these results suggest that breast cancer‐produced Dkk1 may be an important mechanistic link between primary breast tumors and secondary osteolytic bone metastases.


Cellular Signalling | 2012

Silibinin Inhibits Wnt/β-catenin Signaling by Suppressing Wnt Co-receptor LRP6 Expression in Human Prostate and Breast Cancer Cells

Wenyan Lu; Cuihong Lin; Taj D. King; Honghong Chen; Robert C. Reynolds; Yonghe Li

Silibinin is a natural compound isolated from milk thistle seed extracts, and has traditionally been used as a hepatoprotectant. A number of studies have also established the cancer therapeutic and chemopreventive role of silibinin in both in vitro and in vivo models. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for the Wnt/β-catenin pathway and represents a promising target for cancer prevention and therapy. In the present study, we found that silibinin was able to repress endogenous LRP6 expression and block Wnt3A-induced LRP6 phosphorylation and Wnt/β-catenin signaling activation in HEK293 cells. Importantly, silibinin was also able to suppress endogenous LRP6 expression and phosphorylation and block Wnt/β-catenin signaling in prostate cancer PC-3 and DU-145 cells and breast cancer MDA-MB-231 and T-47D cells. Mechanistically, silibinin inhibited LRP6 promoter activity and decreased LRP6 mRNA levels in prostate and breast cancer cells. Finally, we demonstrated that silibinin displayed anticancer activity with IC(50) values comparable to those shown to suppress LRP6 expression and Wnt/β-catenin signaling activities in prostate and breast cancer cells. Our data indicate that silibinin is a novel small molecule Wnt/β-catenin signaling inhibitor by suppressing Wnt co-receptor LRP6 expression at the transcription level, and that the anti-cancer activity of silibinin is associated with its inhibitory effect on Wnt/LRP6 signaling.


Oncogene | 2010

Wnt signaling activation and mammary gland hyperplasia in MMTV–LRP6 transgenic mice: implication for breast cancer tumorigenesis

Juan Zhang; Yonghe Li; Qiang Liu; Wenyan Lu; Guojun Bu

Although Wnt signaling activation is frequently observed in human breast cancer, mutations in genes encoding intracellular components of the Wnt signaling pathway are rare. We found that the expression of Wnt signaling co-receptor, LRP6, is upregulated in a subset of human breast cancer tissues and cell lines. To examine whether the overexpression of LRP6 in mammary epithelial cells is sufficient to activate Wnt signaling and promote cell proliferation, we generated transgenic mice overexpressing LRP6 in mammary epithelial cells driven by the mouse mammary tumor virus (MMTV) promoter. We found that mammary glands from MMTV–LRP6 mice exhibit significant Wnt activation evidenced by the translocation of β-catenin from membrane to cytoplasmic/nuclear fractions. The expression of several Wnt target genes including Axin2, Cyclin D1 and c-Myc was also increased in MMTV–LRP6 mice. More importantly, mammary glands from virgin MMTV–LRP6 mice exhibit significant hyperplasia, a precursor to breast cancer, when compared with wild-type littermate controls. Several matrix metalloproteinases are upregulated in MMTV–LRP6 mice that could contribute to the hyperplasia phenotype. Our results suggest that Wnt signaling activation at the cell-surface receptor level can contribute to breast cancer tumorigenesis.


Cancer Prevention Research | 2011

Inhibition of PDE5 by sulindac sulfide selectively induces apoptosis and attenuates oncogenic Wnt/β-catenin-mediated transcription in human breast tumor cells.

Heather N. Tinsley; Bernard D. Gary; Adam B. Keeton; Wenyan Lu; Yonghe Li; Gary A. Piazza

Nonsteroidal anti-inflammatory drugs (NSAID) such as sulindac sulfide (SS) display promising antineoplastic properties, but toxicities resulting from COX inhibition limit their clinical use. Although COX inhibition is responsible for the anti-inflammatory activity of SS, recent studies suggest that phosphodiesterase (PDE) 5 inhibition and activation of cyclic guanosine monophosphate (cGMP) signaling are closely associated with its ability to induce apoptosis of tumor cells. However, the underlying mechanisms responsible for apoptosis induction, factors that influence sensitivity of tumor cells to SS, and the importance of PDE5 for breast tumor cell growth have not been established. Here we show that SS can induce apoptosis of breast tumor cells, which predominantly rely on PDE5 for cGMP hydrolysis but not normal mammary epithelial cells, which rely on PDE isozymes other than PDE5 for cGMP hydrolysis. Inhibition of PDE5 and activation of protein kinase G (PKG) by SS was associated with increased β-catenin phosphorylation, decreased β-catenin mRNA and protein levels, reduced β-catenin nuclear localization, decreased T-cell factor/lymphoid enhancer factor (Tcf/Lef) promoter activity, and decreased expression of Wnt/β-catenin–regulated proteins. Suppression of PDE5 with siRNA or known PDE5 inhibitors was sufficient to selectively induce apoptosis and attenuate β-catenin–mediated transcription in breast tumor cells with minimal effects on normal mammary epithelial cells. These findings provide evidence that SS induces apoptosis of breast tumor cells through a mechanism involving inhibition of PDE5 and attenuation of oncogenic Wnt/β-catenin–mediated transcription. We conclude that PDE5 represents a novel molecular target for the discovery of safer and more efficacious drugs for breast cancer chemoprevention. Cancer Prev Res; 4(8); 1275–84. ©2011 AACR.


PLOS ONE | 2010

Dkk1 Stabilizes Wnt Co-Receptor LRP6: Implication for Wnt Ligand-Induced LRP6 Down-Regulation

Yonghe Li; Wenyan Lu; Taj D. King; Chia Chen Liu; Gautam N. Bijur; Guojun Bu

Background The low density lipoprotein receptor-related protein-6 (LRP6) is an essential co-receptor for canonical Wnt signaling. Dickkopf 1 (Dkk1), a major secreted Wnt signaling antagonist, binds to LRP6 with high affinity and prevents the Frizzled-Wnt-LRP6 complex formation in response to Wnts. Previous studies have demonstrated that Dkk1 promotes LRP6 internalization and degradation when it forms a ternary complex with the cell surface receptor Kremen. Methodology/Principal Findings In the present study, we found that transfected Dkk1 induces LRP6 accumulation while inhibiting Wnt/LRP6 signaling. Treatment with Dkk1-conditioned medium or recombinant Dkk1 protein stabilized LRP6 with a prolonged half-life and induces LRP6 accumulation both at the cell surface and in endosomes. We also demonstrated that Kremen2 co-expression abrogated the effect of Dkk1 on LRP6 accumulation, indicating that the effect of Kremen2 is dominant over Dkk1 regulation of LRP6. Furthermore, we found that Wnt3A treatment induces LRP6 down-regulation, an effect paralleled with a Wnt/LRP6 signaling decay, and that Dkk1 treatment blocked Wnt3A-induced LRP6 down-regulation. Finally, we found that LRP6 turnover was blocked by an inhibitor of caveolae-mediated endocytosis. Conclusions/Significance Our results reveal a novel role for Dkk1 in preventing Wnt ligand-induced LRP6 down-regulation and contribute significantly to our understanding of Dkk1 function in Wnt/LRP6 signaling.


Cancer Prevention Research | 2010

Colon Tumor Cell Growth-Inhibitory Activity of Sulindac Sulfide and Other Nonsteroidal Anti-Inflammatory Drugs Is Associated with Phosphodiesterase 5 Inhibition

Heather N. Tinsley; Bernard D. Gary; Jose Thaiparambil; Nan Li; Wenyan Lu; Yonghe Li; Yulia Y. Maxuitenko; Adam B. Keeton; Gary A. Piazza

Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity, but toxicity resulting from cyclooxygenase (COX) inhibition limits their clinical use for chemoprevention. Studies suggest that the mechanism may be COX independent, although alternative targets have not been well defined. Here, we show that the NSAID sulindac sulfide (SS) inhibits cyclic guanosine 3′,5′-monophosphate (cGMP) phosphodiesterase (PDE) activity in colon tumor cell lysates at concentrations that inhibit colon tumor cell growth in vitro and in vivo. A series of chemically diverse NSAIDs also inhibited cGMP hydrolysis at concentrations that correlate with their potency to inhibit colon tumor cell growth, whereas no correlation was observed with COX-2 inhibition. Consistent with its selectivity for inhibiting cGMP hydrolysis compared with cyclic AMP hydrolysis, SS inhibited the cGMP-specific PDE5 isozyme and increased cGMP levels in colon tumor cells. Of numerous PDE isozyme–specific inhibitors evaluated, only the PDE5-selective inhibitor MY5445 inhibited colon tumor cell growth. The effects of SS and MY5445 on cell growth were associated with inhibition of β-catenin–mediated transcriptional activity to suppress the synthesis of cyclin D and survivin, which regulate tumor cell proliferation and apoptosis, respectively. SS had minimal effects on cGMP PDE activity in normal colonocytes, which displayed reduced sensitivity to SS and did not express PDE5. PDE5 was found to be overexpressed in colon tumor cell lines as well as in colon adenomas and adenocarcinomas compared with normal colonic mucosa. These results suggest that PDE5 inhibition, cGMP elevation, and inhibition of β-catenin transcriptional activity may contribute to the chemopreventive properties of certain NSAIDs. Cancer Prev Res; 3(10); 1303–13. ©2010 AACR.


Biochemistry | 2010

Mesd is a universal inhibitor of wnt coreceptors lrp5 and lrp6 and blocks wnt/β-catenin signaling in cancer cells

Wenyan Lu; Chia Chen Liu; Jaideep V. Thottassery; Guojun Bu; Yonghe Li

Mesd is a specialized chaperone for low-density lipoprotein receptor-related protein 5 (LRP5) and LRP6. In our previous studies, we found that Mesd binds to mature LRP6 on the cell surface and blocks the binding of Wnt antagonist Dickkopf-1 (Dkk1) to LRP6. Herein, we demonstrate that Mesd also binds to LRP5 with a high affinity and is a universal inhibitor of LRP5 and LRP6 ligands. Mesd not only blocks binding of Wnt antagonists Dkk1 and Sclerostin to LRP5 and LRP6 but also inhibits Wnt3A and Rspondin1-induced Wnt/beta-catenin signaling in LRP5- and LRP6-expressing cells. We also found that Mesd, Dkk1, and Sclerostin compete with one another for binding to LRP5 and LRP6 at the cell surface. More importantly, we demonstrated that Mesd is able to suppress LRP6 phosphorylation and Wnt/beta-catenin signaling in prostate cancer PC-3 cells and inhibits PC-3 cell proliferation. Our results indicate that recombinant Mesd protein is a useful tool for studying Wnt/beta-catenin signaling on the cell surface and has a potential therapeutic role in Wnt-dependent cancers.


Oncogene | 2015

Phosphodiesterase 10A: a novel target for selective inhibition of colon tumor cell growth and β-catenin-dependent TCF transcriptional activity

Nan Li; Kevin Lee; Yaguang Xi; Bing Zhu; Bernard D. Gary; Veronica Ramirez-Alcantara; Evrim Gurpinar; Joshua C. Canzoneri; Alexandra Fajardo; Sara C. Sigler; John T. Piazza; Xi Chen; Joel Andrews; Meagan Thomas; Wenyan Lu; Yonghe Li; Danuel J. Laan; Mary P. Moyer; Suzanne Russo; Brian T. Eberhardt; Larry Yet; Adam B. Keeton; William E. Grizzle; Gary A. Piazza

The cyclic nucleotide phosphodiesterase 10A (PDE10) has been mostly studied as a therapeutic target for certain psychiatric and neurological conditions, although a potential role in tumorigenesis has not been reported. Here we show that PDE10 is elevated in human colon tumor cell lines compared with normal colonocytes, as well as in colon tumors from human clinical specimens and intestinal tumors from ApcMin/+ mice compared with normal intestinal mucosa, respectively. An isozyme and tumor-selective role of PDE10 were evident by the ability of small-molecule inhibitors and small interfering RNA knockdown to suppress colon tumor cell growth with reduced sensitivity of normal colonocytes. Stable knockdown of PDE10 by short hairpin RNA also inhibits colony formation and increases doubling time of colon tumor cells. PDE10 inhibition selectively activates cGMP/cGMP-dependent protein kinase signaling to suppress β-catenin levels and T-cell factor (TCF) transcriptional activity in colon tumor cells. Conversely, ectopic expression of PDE10 in normal and precancerous colonocytes increases proliferation and activates TCF transcriptional activity. These observations suggest a novel role of PDE10 in colon tumorigenesis and that inhibitors may be useful for the treatment or prevention of colorectal cancer.

Collaboration


Dive into the Wenyan Lu's collaboration.

Top Co-Authors

Avatar

Yonghe Li

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

Gary A. Piazza

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Adam B. Keeton

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Mark J. Suto

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

Donald J. Buchsbaum

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Bernard D. Gary

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Cuihong Lin

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nan Li

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Bo Xu

Southern Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge