Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenying Li is active.

Publication


Featured researches published by Wenying Li.


Drug Metabolism and Disposition | 2005

GLUCURONIDATION CONVERTS GEMFIBROZIL TO A POTENT, METABOLISM-DEPENDENT INHIBITOR OF CYP2C8: IMPLICATIONS FOR DRUG-DRUG INTERACTIONS

Brian W. Ogilvie; Donglu Zhang; Wenying Li; A. David Rodrigues; Amy E. Gipson; Jeff Holsapple; Paul Toren; Andrew Parkinson

Gemfibrozil more potently inhibits CYP2C9 than CYP2C8 in vitro, and yet the opposite inhibitory potency is observed in the clinic. To investigate this apparent paradox, we evaluated both gemfibrozil and its major metabolite, an acyl-glucuronide (gemfibrozil 1-O-β-glucuronide) as direct-acting and metabolism-dependent inhibitors of the major drug-metabolizing cytochrome P450 enzymes (CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) in human liver microsomes. Gemfibrozil most potently inhibited CYP2C9 (IC50 of 30 μM), whereas gemfibrozil glucuronide most potently inhibited CYP2C8 (IC50 of 24 μM). Unexpectedly, gemfibrozil glucuronide, but not gemfibrozil, was found to be a metabolism-dependent inhibitor of CYP2C8 only. The IC50 for inhibition of CYP2C8 by gemfibrozil glucuronide decreased from 24 μM to 1.8 μM after a 30-min incubation with human liver microsomes and NADPH. Inactivation of CYP2C8 by gemfibrozil glucuronide required NADPH, and proceeded with a KI (inhibitor concentration that supports half the maximal rate of enzyme inactivation) of 20 to 52 μM and a kinact (maximal rate of inactivation) of 0.21 min–1. Potent inhibition of CYP2C8 was also achieved by first incubating gemfibrozil with alamethicin-activated human liver microsomes and UDP-glucuronic acid (to form gemfibrozil glucuronide), followed by a second incubation with NADPH. Liquid chromatography-tandem mass spectrometry analysis established that human liver microsomes and recombinant CYP2C8 both convert gemfibrozil glucuronide to a hydroxylated metabolite, with oxidative metabolism occurring on the dimethylphenoxy moiety (the group furthest from the glucuronide moiety). The results described have important implications for the mechanism of the clinical interaction reported between gemfibrozil and CYP2C8 substrates such as cerivastatin, repaglinide, rosiglitazone, and pioglitazone.


Drug Metabolism and Disposition | 2010

In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans.

Mary T. Obermeier; Ming Yao; Ashish Khanna; Barry Koplowitz; Mingshe Zhu; Wenying Li; Bernard J. Komoroski; Sreeneeranj Kasichayanula; Lorell Discenza; William N. Washburn; Wei Meng; Bruce A. Ellsworth; Jean M. Whaley; William G. Humphreys

(2S,3R,4R,5S,6R)-2-(3-(4-Ethoxybenzyl)-4-chlorophenyl)-6-hydroxymethyl-tetrahydro-2H-pyran-3,4,5-triol (dapagliflozin; BMS-512148) is a potent sodium-glucose cotransporter type II inhibitor in animals and humans and is currently under development for the treatment of type 2 diabetes. The preclinical characterization of dapagliflozin, to allow compound selection and prediction of pharmacological and dispositional behavior in the clinic, involved Caco-2 cell permeability studies, cytochrome P450 (P450) inhibition and induction studies, P450 reaction phenotyping, metabolite identification in hepatocytes, and pharmacokinetics in rats, dogs, and monkeys. Dapagliflozin was found to have good permeability across Caco-2 cell membranes. It was found to be a substrate for P-glycoprotein (P-gp) but not a significant P-gp inhibitor. Dapagliflozin was not found to be an inhibitor or an inducer of human P450 enzymes. The in vitro metabolic profiles of dapagliflozin after incubation with hepatocytes from mice, rats, dogs, monkeys, and humans were qualitatively similar. Rat hepatocyte incubations showed the highest turnover, and dapagliflozin was most stable in human hepatocytes. Prominent in vitro metabolic pathways observed were glucuronidation, hydroxylation, and O-deethylation. Pharmacokinetic parameters for dapagliflozin in preclinical species revealed a compound with adequate oral exposure, clearance, and elimination half-life, consistent with the potential for single daily dosing in humans. The pharmacokinetics in humans after a single dose of 50 mg of [14C]dapagliflozin showed good exposure, low clearance, adequate half-life, and no metabolites with significant pharmacological activity or toxicological concern.


Drug Metabolism and Disposition | 2008

Identification of the Human Enzymes Involved in the Oxidative Metabolism of Dasatinib: An Effective Approach for Determining Metabolite Formation Kinetics

Lifei Wang; Lisa J. Christopher; Donghui Cui; Wenying Li; Ramaswamy A. Iyer; W. Griffith Humphreys; Donglu Zhang

N-(2-Chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl]-2-methyl-4-pyrimidinyl]amino]-5-thiazolecarboxamide (dasatinib, Sprycel, BMS-354825; Bristol-Myers Squibb, Princeton, NJ) is a potent protein kinase inhibitor to treat chronic myeloid leukemia. In vivo studies have shown that the primary oxidative metabolites of dasatinib are M4 (N-dealkylation), M5 (N-oxidation), M6 (carboxylic acid formation), M20, and M24 (hydroxylation). To identify the enzymes responsible for the formation of these metabolites, [14C]-dasatinib and nonradiolabeled dasatinib were incubated with human cDNA-expressed enzymes [cytochromes P450 (P450s) and flavin-containing monooxygenase (FMO) 3] or human liver microsome (HLM) in the presence of selective P450 inhibitors (antibodies and chemical inhibitors). The results of these experiments showed that metabolites M4, M20, and M24 were mainly generated by CYP3A4; M5 was primarily formed by FMO3; and M6 was formed by a cytosolic oxidoreductase. The enzyme kinetic analysis showed that the formation of M4 and M5 in HLM followed the Michaelis-Menten kinetics, and the formation data of M20 and M24 fitted well to a partial substrate inhibition kinetic model. The Km values were determined by the kinetic analysis of the substrate-dependent metabolite formation plots from a large number of incubations with the nonlabeled dasatinib; the Vmax values were calculated with the predetermined Km values and the metabolite formation rates from a limited number of incubations with [14C]dasatinib. The intrinsic formation clearance values (Vmax/Km) of 52, 14, 274, and 20 μl/mg protein/min for the formation of M4, M5, M20, and M24, respectively, suggested that the formation of M20 was more efficient than other metabolites. Collectively, multiple in vitro experiments showed that dasatinib was predominately metabolized by CYP3A4.


Drug Metabolism and Disposition | 2008

Confirmation That Cytochrome P450 2C8 (CYP2C8) Plays a Minor Role in (S)-(+)- and (R)-(-)-Ibuprofen Hydroxylation in Vitro

Shu-Ying Chang; Wenying Li; Sarah C. Traeger; Bei Wang; Donghui Cui; Hongjian Zhang; Bo Wen; A. David Rodrigues

Various groups have sought to determine the impact of CYP2C8 genotype (and CYP2C8 inhibition) on the pharmacokinetics (PK) of ibuprofen (IBU) enantiomers. However, the contribution of cytochrome P450 2C8 (CYP2C8) in human liver microsomes (HLMs) has not been reported. Therefore, in vitro cytochrome P450 (P450) reaction phenotyping was conducted with selective inhibitors of cytochrome P450 2C9 (CYP2C9) and CYP2C8. In the presence of HLMs, sulfaphenazole (CYP2C9 inhibitor), and anti-CYP2C9 monoclonal antibodies (mAbs) inhibited (73–100%) the 2- and 3-hydroxylation of both IBU enantiomers (1 and 20 μM). At a higher IBU concentration (500 μM), the same inhibitors were less able to inhibit the 2-hydroxylation of (S)-(+)-IBU (32–52%) and (R)-(-)-IBU (30–64%), whereas the 3-hydroxylation of (S)-(+)-IBU and (R)-(-)-IBU was inhibited 66 to 83 and 70 to 89%, respectively. In contrast, less inhibition was observed with montelukast (CYP2C8 inhibitor, ≤35%) and anti-CYP2C8 mAbs (≤24%) at all concentrations of IBU. When (S)-(+)-IBU and (R)-(-)-IBU (1 μM) were incubated with a panel of recombinant human P450s, only CYP2C9 formed appreciable amounts of the hydroxy metabolites. At a higher IBU enantiomer concentration (500 μM), additional P450s catalyzed 2-hydroxylation (CYP3A4, CYP2C8, CYP2C19, CYP2D6, CYP2E1, and CYP2B6) and 3-hydroxylation (CYP2C19). When the P450 reaction phenotype and additional clearance pathways are considered (e.g., direct glucuronidation and chiral inversion), it is concluded that CYP2C8 plays a minor role in (R)-(-)-IBU (<10%) and (S)-(+)-IBU (∼13%) clearance. By extension, one would not expect CYP2C8 inhibition (and genotype) to greatly affect the pharmacokinetic profile of either enantiomer. On the other hand, CYP2C9 inhibition and genotype are expected to have an impact on the PK of (S)-(+)-IBU.


Journal of Medicinal Chemistry | 2014

Discovery and Early Clinical Evaluation of BMS-605339, a Potent and Orally Efficacious Tripeptidic Acylsulfonamide NS3 Protease Inhibitor for the Treatment of Hepatitis C Virus Infection.

Paul Michael Scola; Alan Xiangdong Wang; Andrew C. Good; Li-Qiang Sun; Keith D. Combrink; Jeffrey Allen Campbell; Jie Chen; Yong Tu; Ny Sin; Brian Lee Venables; Sing-Yuen Sit; Yan Chen; Anthony J. Cocuzza; Donna M. Bilder; Stanley V. D’Andrea; Barbara Zheng; Piyasena Hewawasam; Min Ding; Jan Willem Thuring; Jianqing Li; Dennis Hernandez; Fei Yu; Paul Falk; Guangzhi Zhai; Amy K. Sheaffer; Chaoqun Chen; Min S. Lee; Diana Barry; Jay O. Knipe; Wenying Li

The discovery of BMS-605339 (35), a tripeptidic inhibitor of the NS3/4A enzyme, is described. This compound incorporates a cyclopropylacylsulfonamide moiety that was designed to improve the potency of carboxylic acid prototypes through the introduction of favorable nonbonding interactions within the S1 site of the protease. The identification of 35 was enabled through the optimization and balance of critical properties including potency and pharmacokinetics (PK). This was achieved through modulation of the P2* subsite of the inhibitor which identified the isoquinoline ring system as a key template for improving PK properties with further optimization achieved through functionalization. A methoxy moiety at the C6 position of this isoquinoline ring system proved to be optimal with respect to potency and PK, thus providing the clinical compound 35 which demonstrated antiviral activity in HCV-infected patients.


Drug Metabolism and Disposition | 2008

Biotransformation of [14C]Dasatinib : In Vitro Studies in Rat, Monkey, and Human and Disposition after Administration to Rats and Monkeys

Lisa J. Christopher; Donghui Cui; Wenying Li; Anthony Barros; Vinod Kumar Arora; Haiying Zhang; Lifei Wang; Donglu Zhang; James A. Manning; Kan He; Anthony M. Fletcher; Marc Ogan; Michael W. Lago; Samuel J. Bonacorsi; W. Griffith Humphreys; Ramaswamy A. Iyer

This study describes the in vitro metabolism of [14C]dasatinib in liver tissue incubations from rat, monkey, and human and the in vivo metabolism in rat and monkey. Across species, dasatinib underwent in vitro oxidative metabolism to form five primary oxidative metabolites. In addition to the primary metabolites, secondary metabolites formed from combinations of the oxidative pathways and conjugated metabolites of dasatinib and its oxidative metabolites were also observed in hepatocytes incubations. In in vivo studies in rats and monkeys, the majority of the radioactive dose was excreted in the bile and feces. In bile duct–cannulated monkeys after an i.v. dose, 13.7% of the radioactive dose was excreted in the feces through direct secretion. Dasatinib comprised 56 and 26% of the area under the curve (AUC) (0–8 h) of total radioactivity (TRA) in plasma, whereas multiple metabolites accounted for the remaining 44 and 74% of the AUC (0–8 h) of TRA for rats and monkeys, respectively. In rat and monkey bile, dasatinib accounted for <12% of the excreted dose, suggesting that dasatinib was extensively metabolized before elimination. The metabolic profiles in bile were similar to the hepatocyte profiles. In both species, a large portion of the radioactivity excreted in bile (≥29% of the dose) was attributed to N-oxides and conjugated metabolites. In rat and monkey feces, only the oxidative metabolites and their further oxidation products were identified. The absence of conjugative or N-oxide metabolites in the feces suggests hydrolysis or reduction, respectively, in the gastrointestinal tract before elimination.


Drug Metabolism and Disposition | 2006

Comparative Metabolism of Radiolabeled Muraglitazar in Animals and Humans by Quantitative and Qualitative Metabolite Profiling

Donglu Zhang; Lifei Wang; Nirmala Raghavan; Haiying Zhang; Wenying Li; Peter T. W. Cheng; Ming Yao; Litao Zhang; Mingshe Zhu; Samuel J. Bonacorsi; Suresh Yeola; James Mitroka; Narayanan Hariharan; Vinayak Hosagrahara; Gamini Chandrasena; Wen Chyi Shyu; W. Griffith Humphreys

Muraglitazar (Pargluva), a dual α/γ peroxisome proliferator-activated receptor (PPAR) activator, has both glucose- and lipid-lowering effects in animal models and in patients with diabetes. This study describes the in vivo and in vitro comparative metabolism of [14C]muraglitazar in rats, dogs, monkeys, and humans by quantitative and qualitative metabolite profiling. Metabolite identification and quantification methods used in these studies included liquid chromatography/mass spectrometry (LC/MS), LC/tandem MS, LC/radiodetection, LC/UV, and a newly described mass defect filtering technique in conjunction with high resolution MS. After oral administration of [14C]muraglitazar, absorption was rapid in all species, reaching a concentration peak for parent and total radioactivity in plasma within 1 h. The most abundant component in plasma at all times in all species was the parent drug, and no metabolite was present in greater than 2.5% of the muraglitazar concentrations at 1 h postdose in rats, dogs, and humans. All metabolites observed in human plasma were also present in rats, dogs, or monkeys. Urinary excretion of radioactivity was low (<5% of the dose) in all intact species, and the primary route of elimination was via biliary excretion in rats, monkeys, and humans. Based on recovered doses in urine and bile, muraglitazar showed a very good absorption in rats, monkeys, and humans. The major drug-related components in bile of rats, monkeys, and humans were glucuronides of muraglitazar and its oxidative metabolites. The parent compound was a minor component in bile, suggesting extensive metabolism of the drug. In contrast, the parent drug and oxidative metabolites were the major components in feces, and no glucuronide conjugates were found, suggesting that glucuronide metabolites were excreted in bile and hydrolyzed in the gastrointestinal tract. The metabolites of muraglitazar resulted from both glucuronidation and oxidation. The metabolites in general had greatly reduced activity as PPARα/γ activators relative to muraglitazar. In conclusion, muraglitazar was rapidly absorbed, extensively metabolized through glucuronidation and oxidation, and mainly eliminated in the feces via biliary excretion of glucuronide metabolites in all species studied. Disposition and metabolic pathways were qualitatively similar in rats, dogs, monkeys, and humans.


British Journal of Clinical Pharmacology | 2010

Repaglinide-gemfibrozil drug interaction: inhibition of repaglinide glucuronidation as a potential additional contributing mechanism

Jinping Gan; Weiqi Chen; Hong Shen; Ling Gao; Yang Hong; Yuan Tian; Wenying Li; Yueping Zhang; Yuwei Tang; Hongjian Zhang; William G. Humphreys; A. David Rodrigues

AIMnTo further explore the mechanism underlying the interaction between repaglinide and gemfibrozil, alone or in combination with itraconazole.nnnMETHODSnRepaglinide metabolism was assessed in vitro (human liver subcellular fractions, fresh human hepatocytes, and recombinant enzymes) and the resulting incubates were analyzed, by liquid chromatography-mass spectrometry (LC-MS) and radioactivity counting, to identify and quantify the different metabolites therein. Chemical inhibitors, in addition to a trapping agent, were also employed to elucidate the importance of each metabolic pathway. Finally, a panel of human liver microsomes (genotyped for UGT1A1*28 allele status) was used to determine the importance of UGT1A1 in the direct glucuronidation of repaglinide.nnnRESULTSnThe results of the present study demonstrate that repaglinide can undergo direct glucuronidation, a pathway that can possibly contribute to the interaction with gemfibrozil. For example, [³H]-repaglinide formed glucuronide and oxidative metabolites (M2 and M4) when incubated with primary human hepatocytes. Gemfibrozil effectively inhibited (∼78%) both glucuronide and M4 formation, but had a minor effect on M2 formation. Concomitantly, the overall turnover of repaglinide was also inhibited (∼80%), and was completely abolished when gemfibrozil was co-incubated with itraconazole. These observations are in qualitative agreement with the in vivo findings. UGT1A1 plays a significant role in the glucuronidation of repaglinide. In addition, gemfibrozil and its glucuronide inhibit repaglinide glucuronidation and the inhibition by gemfibrozil glucuronide is time-dependent.nnnCONCLUSIONSnInhibition of UGT enzymes, especially UGT1A1, by gemfibrozil and its glucuronide is an additional mechanism to consider when rationalizing the interaction between repaglinide and gemfibrozil.


Clinical Pharmacokinectics | 2015

Asunaprevir: A Review of Preclinical and Clinical Pharmacokinetics and Drug–Drug Interactions

Timothy Eley; Tushar Garimella; Wenying Li; Richard Bertz

Asunaprevir is a tripeptidic acylsulfonamide inhibitor of the hepatitis C virus (HCV) NS3/4A protease. Asunaprevir undergoes rapid absorption, with a time to reach maximum plasma concentration (Tmax) of 2–4xa0h and an elimination half-life (t½) of ≈15–20xa0h observed in single-ascending dose studies. Steady state was achieved by day 7 in multiple-ascending dose studies. The large food effect observed with earlier formulations was mitigated by the soft-gel capsule. Asunaprevir demonstrates high apparent oral clearance and minimal renal elimination, and is eliminated primarily via cytochrome P450 (CYP) 3A4–mediated hepatic oxidative metabolism and faecal excretion. Highly preferential distribution of asunaprevir to the liver occurs via organic anion–transporting polypeptide (OATP)–mediated transport and results in low plasma concentrations. The condition of the liver affects disposition, as higher asunaprevir plasma exposures are observed in patients infected with HCV and/or hepatic impairment. Japanese patients also have higher exposure relative to North American/European patients, but comparable safety at the registrational dose. Asunaprevir has a low potential to perpetrate drug–drug interactions via CYP3A4, P-glycoprotein and OATP, but is a moderate CYP2D6 inhibitor; concomitant drugs that are substrates of CYP2D6 or P-glycoprotein and have a narrow therapeutic index should be used with care. Asunaprevir plasma exposure is strongly affected by inhibitors of OATP transport. No clinically significant interactions were observed between asunaprevir and daclatasvir or daclatasvir/beclabuvir. Asunaprevir has a complex pharmacokinetic profile and forms part of potent and well-tolerated all-oral regimens for the treatment of chronic HCV infection.


Analytical Chemistry | 2012

Practical and Efficient Strategy for Evaluating Oral Absolute Bioavailability with an Intravenous Microdose of a Stable Isotopically-Labeled Drug Using a Selected Reaction Monitoring Mass Spectrometry Assay

Hao Jiang; Jianing Zeng; Wenying Li; Marc Bifano; Huidong Gu; Craig Titsch; John A. Easter; Richard C. Burrell; Hamza Kandoussi; Anne-Françoise Aubry; Mark E. Arnold

A strategy of using selected reaction monitoring (SRM) mass spectrometry for evaluating oral absolute bioavailability with concurrent intravenous (i.v.) microdosing a stable isotopically labeled (SIL) drug was developed and validated. First, the isotopic contribution to SRM (ICSRM) of the proposed SIL drug and SIL internal standard (IS) was theoretically calculated to guide their chemical synthesis. Second, the lack of an isotope effect on drug exposure was evaluated in a monkey study by i.v. dosing a mixture of the SIL and the unlabeled drugs. Third, after the SIL drug (100 μg) was concurrently i.v. dosed to humans, at T(max) of an oral therapeutic dose of the unlabeled drug, both drugs in plasma specimens were simultaneously quantified by a sensitive and accurate SRM assay. This strategy significantly improves bioanalytical data quality and saves time, costs, and resources by avoiding a traditional absolute bioavailability study or the newer approach of microdoses of a radio-microtracer measured by accelerator mass spectrometry.

Collaboration


Dive into the Wenying Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge