Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenying Zhang is active.

Publication


Featured researches published by Wenying Zhang.


PLOS ONE | 2012

Unraveling the Genetic Basis of Seed Tocopherol Content and Composition in Rapeseed (Brassica napus L.)

Xingxing Wang; Chunyu Zhang; Lingjuan Li; Steffi Fritsche; Jessica Endrigkeit; Wenying Zhang; Yan Long; Christian Jung; Jinling Meng

Background Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38) is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL) detection, genome-wide association analysis, and homologous gene mapping. Methodology/Principal Findings We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH) population, its reconstructed F2 (RC-F2) population, and a panel of 142 rapeseed accessions (association panel). Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F2 populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL. Conclusions/Significance This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used for marker-assisted selection of oilseed rape lines with superior tocopherol content and composition.


PLOS ONE | 2015

Quantitative Trait Loci for Salinity Tolerance Identified under Drained and Waterlogged Conditions and Their Association with Flowering Time in Barley (Hordeum vulgare. L)

Yanling Ma; Sergey Shabala; Chengdao Li; Chunji Liu; Wenying Zhang; Meixue Zhou

Introduction Salinity is one of the major abiotic stresses affecting crop production via adverse effects of osmotic stress, specific ion toxicity, and stress-related nutritional disorders. Detrimental effects of salinity are also often exacerbated by low oxygen availability when plants are grown under waterlogged conditions. Developing salinity-tolerant varieties is critical to overcome these problems, and molecular marker assisted selection can make breeding programs more effective. Methods In this study, a double haploid (DH) population consisting of 175 lines, derived from a cross between a Chinese barley variety Yangsimai 1 (YSM1) and an Australian malting barley variety Gairdner, was used to construct a high density molecular map which contained more than 8,000 Diversity Arrays Technology (DArT) markers and single nucleotide polymorphism (SNP) markers. Salinity tolerance of parental and DH lines was evaluated under drained (SalinityD) and waterlogged (SalinityW) conditions at two different sowing times. Results Three quantitative trait loci (QTL) located on chromosome 1H, single QTL located on chromosomes 1H, 2H, 4H, 5H and 7H, were identified to be responsible for salinity tolerance under different environments. Waterlogging stress, daylight length and temperature showed significant effects on barley salinity tolerance. The QTL for salinity tolerance mapped on chromosomes 4H and 7H, QSlwd.YG.4H, QSlwd.YG.7H and QSlww.YG.7H were only identified in winter trials, while the QTL on chromosome 2H QSlsd.YG.2H and QSlsw.YG.2H were only detected in summer trials. Genes associated with flowering time were found to pose significant effects on the salinity QTL mapped on chromosomes 2H and 5H in summer trials. Given the fact that the QTL for salinity tolerance QSlsd.YG.1H and QSlww.YG.1H-1 reported here have never been considered in the literature, this warrants further investigation and evaluation for suitability to be used in breeding programs.


BMC Plant Biology | 2017

Characterization of the sdw1 semi-dwarf gene in barley

Yanhao Xu; Qiaojun Jia; Gaofeng Zhou; Xiao-Qi Zhang; Tefera Tolera Angessa; Sue Broughton; George Yan; Wenying Zhang; Chengdao Li

BackgroundThe dwarfing gene sdw1 has been widely used throughout the world to develop commercial barley varieties. There are at least four different alleles at the sdw1 locus.ResultsMutations in the gibberellin 20-oxidase gene (HvGA20ox2) resulted in multiple alleles at the sdw1 locus. The sdw1.d allele from Diamant is due to a 7-bp deletion in exon 1, while the sdw1.c allele from Abed Denso has 1-bp deletion and a 4-bp insertion in the 5’ untranslated region. The sdw1.a allele from Jotun resulted from a total deletion of the HvGA20ox2 gene. The structural changes result in lower gene expression in sdw1.d and lack of expression in sdw1.a. There are three HvGA20ox genes in the barley genome. The partial or total loss of function of the HvGA20ox2 gene could be compensated by enhanced expression of its homolog HvGA20ox1and HvGA20ox3. A diagnostic molecular marker was developed to differentiate between the wild-type, sdw1.d and sdw1.a alleles and another molecular marker for differentiation of sdw1.c and sdw1.a. The markers were further tested in 197 barley varieties, out of which 28 had the sdw1.d allele and two varieties the sdw1.a allele. To date, the sdw1.d and sdw1.a alleles have only been detected in the modern barley varieties and lines.ConclusionsThe results provided further proof that the gibberellin 20-oxidase gene (HvGA20ox2) is the functional gene of the barley sdw1 mutants. Different deletions resulted in different functional alleles for different breeding purposes. Truncated protein could maintain partial function. Partial or total loss of function of the HvGA20ox2 gene could be compensated by enhanced expression of its homolog HvGA20ox1 and HvGA20ox3.


Plant Signaling & Behavior | 2018

Drought stress responses in maize are diminished by Piriformospora indica

Wenying Zhang; Jun Wang; Le Xu; Aiai Wang; Lan Huang; Hewei Du; Lijuan Qiu

ABSTRACT As an endophytic fungus of Sebacinales, Piriformospora indica promotes plant growth and resistance to abiotic stress, including drought. Colonization of maize roots promoted the leaf size, root length and number of tap roots. Under drought stress, the maize seedlings profited from the presence of the fungus and performed visibly better than the uncolonized controls. To identify genes and biological processes involved in growth promotion and drought tolerance conferred by P. indica, the root transcriptome of colonized and uncolonized seedlings was analyzed 0, 6 and 12 h after drought stress (20% polyethylene glycol 6000). The number of P. indica-responsive genes increased from 464 (no stress at 0 h) to 1337 (6 h drought) and 2037 (12 h drought). Gene Ontology analyses showed that the carbon and sulfur metabolisms are major targets of the fungus. Furthermore, the growth promoting effect of P. indica is reflected by higher transcript levels for microtubule associated processes. Under drought stress, the fungus improved the oxidative potential of the roots, and stimulated genes for hormone functions, including those which respond to abscisic acid, auxin, salicylic acid and cytokinins. The comparative analyses of our study provides systematic insight into the molecular mechanism how P. indica promotes plant performance under drought stress, and presents a collection of genes which are specifically targeted by the fungus under drought stress in maize roots.


PLOS ONE | 2017

Piriformospora indica promotes early flowering in Arabidopsis through regulation of the photoperiod and gibberellin pathways

Rui Pan; Le Xu; Qiao Wei; Chu Wu; Wenlin Tang; Wenying Zhang

Flowering in plants is synchronized by both environmental cues and internal regulatory factors. Previous studies have shown that the endophytic fungus Piriformospora indica promotes the growth and early flowering in Coleus forskohlii (a medicinal plant) and Arabidopsis. To further dissect the impact of P. indica on pathways responsible for flowering time in Arabidopsis, we co-cultivated Arabidopsis with P. indica and used RT-qPCR to analyze the main gene regulation networks involved in flowering. Our results revealed that the symbiotic interaction of Arabidopsis with P. indica promotes early flower development and the number of siliques. In addition, expression of the core flowering regulatory gene FLOWERING LOCUS T (FT), of genes controlling the photoperiod [CRYPTOCHROMES (CRY1, CRY2) and PHYTOCHROME B (PHYB)] and those related to gibberellin (GA) functions (RGA1, AGL24, GA3, and MYB5) were induced by the fungus, while key genes controlling the age and autonomous pathways remained unchanged. Moreover, early flowering promotion conferred by P. indica was promoted by exogenous GA and inhabited by GA inhibitor, and this effect could be observed under long day and neutral day photoperiod. Therefore, our data suggested that P. indica promotes early flowering in Arabidopsis likely through photoperiod and GA rather than age or the autonomous pathway.


African Journal of Biotechnology | 2011

Different patterns of transcriptomic response to high temperature between diploid and tetraploid Dioscorea zingiberensis C. H.

Yanhao Xu; Fei Yang; Xiaohai Tian; Wenying Zhang; Xiaoyan Wang; Guohui Ma

Polyploidy is an important evolutionary force in plants and may have significant impact on plant breeding. In this study, expression changes between diploid and tetraploid Dioscorea zingiberensis C. H. under control and high temperature conditions were investigated by sequence-related amplified polymorphism (SRAP)-cDNA display approach. Up to 2.7% of the expression changes induced by genome doubling were detected in the tetraploid D. zingiberensis relative to its diploid progenitor. Under high temperature stress, a “random transcriptome response” pattern employed with 6.3% of the expression changes were detected in diploid plants, while, an “activation transcriptome response” pattern developed with 6.9% expression changes were detected in tetraploid plants. This result indicated that there might be ploidy dependent pattern of transcriptomic response to high temperature environment, which might contribute to the evolutionary success of polyploids.


Frontiers in Plant Science | 2017

Characterization of a Thermo-Inducible Chlorophyll-deficient mutant in barley

Rong Wang; Fei Yang; Xiao-Qi Zhang; Dianxin Wu; Cong Tan; Sharon Westcott; Sue Broughton; Chengdao Li; Wenying Zhang; Yanhao Xu

Leaf color is an important trait for not only controlling crop yield but also monitoring plant status under temperature stress. In this study, a thermo-inducible chlorophyll-deficient mutant, named V-V-Y, was identified from a gamma-radiated population of the barley variety Vlamingh. The leaves of the mutant were green under normal growing temperature but turned yellowish under high temperature in the glasshouse experiment. The ratio of chlorophyll a and chlorophyll b in the mutant declined much faster in the first 7–9 days under heat treatment. The leaves of V-V-Y turned yellowish but took longer to senesce under heat stress in the field experiment. Genetic analysis indicated that a single nuclear gene controlled the mutant trait. The mutant gene (vvy) was mapped to the long arm of chromosome 4H between SNP markers 1_0269 and 1_1531 with a genetic distance of 2.2 cM and a physical interval of 9.85 Mb. A QTL for grain yield was mapped to the same interval and explained 10.4% of the yield variation with a LOD score of 4. This QTL is coincident with the vvy gene interval that is responsible for the thermo-inducible chlorophyll-deficient trait. Fine mapping, based on the barley reference genome sequence, further narrowed the vvy gene to a physical interval of 0.428 Mb with 11 annotated genes. This is the first report of fine mapping a thermo-inducible chlorophyll-deficient gene in barley.


Plant and Soil | 2018

Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus

Meiyan Wu; Qiao Wei; Le Xu; Huizhi Li; Wenying Zhang

AimsThe root endophytic fungus Piriformospora indica (P. indica) colonizes the roots of a wide range of higher plants and promotes growth, disease resistance and stress tolerance of the hosts. We investigated the role of P. indica for phosphate (P) mobilization in soils enriched with different P sources and for P uptake into Brassicae napus (B. napus) plants.MethodsSeedlings of B. napus colonized by P. indica were cultivated in pots with sterilized-sands supplied with Ca3 (PO4)2 [Ca3-P], AlPO4 [Al-P] or FePO4 [Fe-P]. The growth of the seedlings, P content, phosphatase activities, amount of organic acids, and expression of the genes BnACP5 for a phosphatase and BnPHt1;4 for a P transporter were investigated.ResultsPiriformospora indica promotes growth of B. napus and the accumulation of P in roots and shoots when P was supplied as Ca3-P, Al-P or Fe-P in the soil. The endophyte stimulated the P availability for the plant by higher phosphatase activities and higher expression of BnACP5 in roots exposed to soil with Ca3-P, Al-P or Fe-P as main P source. The amounts of oxalic, malic and citric acids increased in rhizosphere soil with P. indica colonized by B. napus seedlings. Thus, root-colonization by P. indica promotes the accumulation of organic acids in the rhizosphere. Stronger up-regulation of BnPht1;4 in colonized vs. non-colonized roots demonstrates the involvement of the fungus in counteracting P deficiency by promoting its uptake.ConclusionP. indica promotes the mobilization of P from inorganic sources and P uptake into the roots of B. napus. This is a combined effect of the stimulation of the P solubilizing phosphatase activity in the symbiotic interaction, the production of organic acids as well as the stimulation of the BnPht1;4 and BnACP5 genes under P limitation conditions.


PLOS ONE | 2018

Towards the identification of a gene for prostrate tillers in barley (Hordeum vulgare L.)

Yi Zhou; Gaofeng Zhou; Sue Broughton; Sharon Westcott; Xiao-Qi Zhang; Yanhao Xu; Le Xu; Chengdao Li; Wenying Zhang

Tiller angle, an important agronomic trait, contributes to crop production and plays a vital role in breeding for plant architecture. A barley line V-V-HD, which has prostrate tillers during vegetative growth and erect tillers after booting, is considered the ideal type for repressing weed growth and increasing leaf area during early growth. Genetic analysis identified that the prostrate trait in V-V-HD is controlled by a single gene. A double haploid population with 208 lines from V-V-HD × Buloke was used to map the prostrate growth gene. Ninety-six SNP markers were used for primary mapping, and subsequently, SSR and InDel markers were used for fine mapping. The gene was fine-mapped to a 3.53 Mb region on chromosome 3HL between the markers InDelz3028 and InDelz3032 with 52 candidate genes located in this region. Gene annotation analysis of the 52 genes within the target region indicated that a gene involved in zinc-ion binding (gene ID HORVU3Hr1G090910) is likely to be the candidate gene for prostrate growth in V-V-HD, and is linked to the denso/sdw gene. Association analysis showed that prostrate plants were shorter, flowered later.


Molecular Breeding | 2018

Molecular marker-assisted backcrossing breeding: an example to transfer a thermostable β-amylase gene from wild barley

Yanhao Xu; Xiao-Qi Zhang; Stefan Harasymow; Sharon Westcott; Wenying Zhang; Chengdao Li

Molecular marker-assisted backcrossing (MABC) is widely recommended for transferring favorable alleles from a donor to an elite variety. The question remains whether MABC is an effective approach to developing a competitive commercial variety. Here, we illustrate the transfer of a thermostable β-amylase allele Sd3 from wild barley into a commercial barley variety Gairdner. The elite lines were chosen for the Regional Crop Variety Test that followed a standard conventional breeding process. The results demonstrated that the Sd3 allele not only increased enzyme thermostability but dramatically enhanced diastatic power, an important malting quality trait. The BC1F1 individuals had a fundamental impact on the comprehensive agronomic and quality traits of the final progenies, demonstrating the importance of screening at the early stage of backcrossing in MABC. There was sufficient genetic variation in the BC3F3 families to select other malting quality and agronomic traits. Ten individual breeding lines with improved β-amylase thermostability also had improved yields and grain plumpness. Three elite lines with improved malting quality and agronomic traits were selected to provide a parental line to incorporate the wild barley allele for breeding a commercial variety. A new strategy should be considered that uses marker-assisted selection and backcrossing to transfer a favorable allele from a wild parent.

Collaboration


Dive into the Wenying Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Le Xu

Yangtze University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sue Broughton

Government of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chu Wu

College of Horticulture

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge