Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenzhen Liu is active.

Publication


Featured researches published by Wenzhen Liu.


BMC Plant Biology | 2011

Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice ( Oryza sativa L.) seedlings when overexpressed

Songlin Ruan; Huasheng Ma; Shiheng Wang; Yaping Fu; Ya Xin; Wenzhen Liu; Fang Wang; Jianxin Tong; Shuzhen Wang; Huizhe Chen

BackgroundHigh Salinity is a major environmental stress influencing growth and development of rice. Comparative proteomic analysis of hybrid rice shoot proteins from Shanyou 10 seedlings, a salt-tolerant hybrid variety, and Liangyoupeijiu seedlings, a salt-sensitive hybrid variety, was performed to identify new components involved in salt-stress signaling.ResultsPhenotypic analysis of one protein that was upregulated during salt-induced stress, cyclophilin 2 (OsCYP2), indicated that OsCYP2 transgenic rice seedlings had better tolerance to salt stress than did wild-type seedlings. Interestingly, wild-type seedlings exhibited a marked reduction in maximal photochemical efficiency under salt stress, whereas no such change was observed for OsCYP2-transgenic seedlings. OsCYP2-transgenic seedlings had lower levels of lipid peroxidation products and higher activities of antioxidant enzymes than wild-type seedlings. Spatiotemporal expression analysis of OsCYP2 showed that it could be induced by salt stress in both Shanyou 10 and Liangyoupeijiu seedlings, but Shanyou 10 seedlings showed higher OsCYP2 expression levels. Moreover, circadian rhythm expression of OsCYP2 in Shanyou 10 seedlings occurred earlier than in Liangyoupeijiu seedlings. Treatment with PEG, heat, or ABA induced OsCYP2 expression in Shanyou 10 seedlings but inhibited its expression in Liangyoupeijiu seedlings. Cold stress inhibited OsCYP2 expression in Shanyou 10 and Liangyoupeijiu seedlings. In addition, OsCYP2 was strongly expressed in shoots but rarely in roots in two rice hybrid varieties.ConclusionsTogether, these data suggest that OsCYP2 may act as a key regulator that controls ROS level by modulating activities of antioxidant enzymes at translation level. OsCYP2 expression is not only induced by salt stress, but also regulated by circadian rhythm. Moreover, OsCYP2 is also likely to act as a key component that is involved in signal pathways of other types of stresses-PEG, heat, cold, or ABA.


PLOS ONE | 2009

The Effect of the Crosstalk between Photoperiod and Temperature on the Heading-Date in Rice

Weijiang Luan; Huizhe Chen; Yaping Fu; Huamin Si; Wen Peng; Susheng Song; Wenzhen Liu; Guocheng Hu; Zongxiu Sun; Daoxin Xie; Chuanqing Sun

Photoperiod and temperature are two important environmental factors that influence the heading-date of rice. Although the influence of the photoperiod on heading has been extensively reported in rice, the molecular mechanism for the temperature control of heading remains unknown. This study reports an early heading mutant derived from tissue culture lines of rice and investigates the heading-date of wild type and mutant in different photoperiod and temperature treatments. The linkage analysis showed that the mutant phenotype cosegregated with the Hd1 locus. Sequencing analysis found that the mutant contained two insertions and several single-base substitutions that caused a dramatic reduction in Hd1mRNA levels compared with wild type. The expression patterns of Hd1 and Hd3a were also analyzed in different photoperiod and temperature conditions, revealing that Hd1 mRNA levels displayed similar expression patterns for different photoperiod and temperature treatments, with high expression levels at night and reduced levels in the daytime. In addition, Hd1 displayed a slightly higher expression level under long-day and low temperature conditions. Hd3a mRNA was present at a very low level under low temperature conditions regardless of the day-length. This result suggests that suppression of Hd3a expression is a principle cause of late heading under low temperature and long-day conditions.


Journal of Integrative Plant Biology | 2013

Characterization and fine mapping of a novel rice narrow leaf mutant nal9.

Wei Li; Chao Wu; Guocheng Hu; Li Xing; Wenjing Qian; Huamin Si; Zongxiu Sun; Xingchun Wang; Yaping Fu; Wenzhen Liu

A narrow leaf mutant was isolated from transgenic rice (Oryza sativa L.) lines carrying a T-DNA insertion. The mutant is characterized by narrow leaves during its whole growth period, and was named nal9 (narrow leaf 9). The mutant also has other phenotypes, such as light green leaves at the seedling stage, reduced plant height, a small panicle and increased tillering. Genetic analysis revealed that the mutation is controlled by a single recessive gene. A hygromycin resistance assay showed that the mutation was not caused by T-DNA insertion, so a map-based cloning strategy was employed to isolate the nal9 gene. The mutant individuals from the F₂ generations of a cross between the nal9 mutant and Longtepu were used for mapping. With 24 F₂ mutants, the nal9 gene was preliminarily mapped near the marker RM156 on the chromosome 3. New INDEL markers were then designed based on the sequence differences between japonica and indica at the region near RM156. The nal9 gene was finally located in a 69.3 kb region between the markers V239B and V239G within BAC OJ1212_C05 by chromosome walking. Sequence and expression analysis showed that an ATP-dependent Clp protease proteolytic subunit gene (ClpP) was most likely to be the nal9 gene. Furthermore, the nal9 mutation was rescued by transformation of the ClpP cDNA driven by the 35S promoter. Accordingly, the ClpP gene was identified as the NAL9 gene. Our results provide a basis for functional studies of NAL9 in future work.


Rice Science | 2007

Rapid Generation of Selectable Marker-Free Transgenic Rice with Three Target Genes by Co-Transformation and Anther Culture

Li Zhu; Ya-ping Fu; Wenzhen Liu; Guo-cheng Hu; Hua-min Si; Ke-xuan Tang; Zongxiu Sun

The ‘double T-DNA’ binary vector p13HSR which harbored two independent T-DNAs, containing hygromycin phosphotransferase gene (hpt) in one T-DNA region and three target genes (hLF, SB401, RZ10) in another T-DNA region, was used to generate selectable marker-free transgenic rice by Agrobacterium-mediated transformation. The regenerated plants with both the three target genes and the selectable marker gene hpt were selected for anther culture. RT-PCR analysis indicated that target genes were inserted in rice genomic DNA and successfully transcribed. It took only one year to obtain double haploid selectable marker-free transgenic plants containing the three target genes with co-transformation followed by anther culture technique, and the efficiency was 12.2%. It was also noted that one or two target genes derived from the binary vector were lost in some transgenic rice plants.


Rice Science | 2011

Resistance of Antimicrobial Peptide Gene Transgenic Rice to Bacterial Blight

Wei Wang; Chao Wu; Mei Liu; Xu-ri Liu; Guo-cheng Hu; Hua-min Si; Zongxiu Sun; Wenzhen Liu; Ya-ping Fu

Antimicrobial peptide is a polypeptide with antimicrobial activity. Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis) were integrated into Oryza sativa L. subsp. japonica cv. Aichi ashahi by Agrobacterium mediated transformation system. PCR analysis showed that the positive ratios of Np3 and Np5 were 36% and 45% in T0 generation, respectively. RT-PCR analysis showed that the antimicrobial peptide genes were expressed in T1 generation, and there was no obvious difference in agronomic traits between transgenic plants and non-transgenic plants. Four Np3 and Np5 transgenic lines in T1 generation were inoculated with Xanthomonas oryzae pv. oryzae strain CR4, and all the four transgenic lines had significantly enhanced resistance to bacterial blight caused by the strain CR4. The Np5 transgenic lines also showed higher resistance to bacterial blight caused by strains JS97-2, Zhe 173 and OS-225. It is suggested that transgenic lines with Np5 gene might possess broad spectrum resistance to rice bacterial blight.


Rice Science | 2007

Identification and Fine Mapping of a Gene Related to Pale Green Leaf Phenotype near the Centromere Region in Rice (Oryza sativa)

Li Zhu; Wenzhen Liu; Chao Wu; Weijiang Luan; Ya-ping Fu; Guo-cheng Hu; Hua-min Si; Zongxiu Sun

A thermo-insensitive pale green leaf mutant (pgl2) was isolated from T-DNA inserted transgenic lines of rice (Oryza sativa L. subsp. japonica cv. Nipponbare). Genetic analysis indicated that the phenotype was caused by a recessive mutation in a single nuclear-encoded gene. To map the PGL2 gene, an F2 population was constructed by crossing the mutant with Longtefu (Oryza sativa L. subsp. indica). The PGL2 locus was roughly linked to SSR marker RM331 on chromosome 8. To finely map the gene, 14 new InDel markers were developed around the marker, and PGL2 was further mapped to a 2.37 Mb centromeric region. Analysis on chlorophyll contents of leaves showed that there was no obvious difference between the mutant and the wild type in total chlorophyll (Chl) content, while the ratio of Chl a / Chl b in the mutant was only about 1, which was distinctly lower than that in the wild type, suggesting that the PGL2 gene was related to the conversion between Chl a and Chl b. Moreover, the method of primer design around the centromeric region was discussed, which would provide insight into fine mapping of the functional genes in plant centromeres.


Plant Science | 2017

Newly identified CSP41b gene localized in chloroplasts affects leaf color in rice

Jiasong Mei; Feifei Li; Xuri Liu; Guocheng Hu; Yaping Fu; Wenzhen Liu

A rice mutant with light-green leaves was discovered from a transgenic line of Oryza sativa. The mutant has reduced chlorophyll content and abnormal chloroplast morphology throughout its life cycle. Genetic analysis revealed that a single nuclear-encoded recessive gene is responsible for the mutation, here designated as lgl1. To isolate the lgl1 gene, a high-resolution physical map of the chromosomal region around the lgl1 gene was made using a mapping population consisting of 1984 mutant individuals. The lgl1 gene was mapped in the 76.5kb region between marker YG4 and marker YG5 on chromosome 12. Sequence analysis revealed that there was a 39bp deletion within the fourth exon of the candidate gene Os12g0420200 (TIGR locus Os12g23180) encoding a chloroplast stem-loop-binding protein of 41kDa b (CSP41b). The lgl1 mutation was rescued by transformation with the wild type CSP41b gene. Accordingly, the CSP41b gene is identified as the LGL1 gene. CSP41b was transcribed in various tissues and was mainly expressed in leaves. Expression of CSP41b-GFP fusion protein indicated that CSP41b is localized in chloroplasts. The expression levels of some key genes involved in chlorophyll biosynthesis and photosynthesis, such as ChlD, ChlI, Hema1, Ygl1, POR, Cab1R, Cab2R, PsaA, and rbcL, was significantly changed in the lgl1 mutant. Our results demonstrate that CSP41b is a novel gene required for normal leaf color and chloroplast morphology in rice.


Planta | 2009

Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice

Wenzhen Liu; Chao Wu; Yaping Fu; Guocheng Hu; Huamin Si; Li Zhu; Weijiang Luan; Zhengquan He; Zongxiu Sun


Planta | 2007

Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.)

Wenzhen Liu; Yaping Fu; Guocheng Hu; Huamin Si; Li Zhu; Chao Wu; Zongxiu Sun


Planta | 2010

Isolation and characterization of a rice mutant with narrow and rolled leaves

Chao Wu; Yaping Fu; Guocheng Hu; Huamin Si; Shihua Cheng; Wenzhen Liu

Collaboration


Dive into the Wenzhen Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge