Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weon Shik Han is active.

Publication


Featured researches published by Weon Shik Han.


American Journal of Science | 2010

Evaluation of trapping mechanisms in geologic CO2 sequestration: Case study of SACROC northern platform, a 35-year CO2 injection site

Weon Shik Han; Brian McPherson; Peter C. Lichtner; Fred Wang

CO2 trapping mechanisms in geologic sequestration are the specific processes that hold CO2 underground in porous formations after it is injected. The main trapping mechanisms of interest include (1) fundamental confinement of mobile CO2 phase under low-permeability caprocks, or stratigraphic trapping, (2) conversion of CO2 to mineral precipitates, or mineral trapping, (3) dissolution in in situ fluid, or solubility trapping, and (4) trapping by surface tension (capillary force) and, correspondingly, remaining in porous media as an immobile CO2 phase, or residual CO2 trapping. The purpose of this work is to evaluate and quantify the competing roles of these different trapping mechanisms, including the relative amounts of storage by each. For the sake of providing a realistic appraisal, we conducted our analyses on a case study site, the SACROC Unit in the Permian basin of western Texas. CO2 has been injected in the subsurface at the SACROC Unit for more than 35 years for the purpose of enhanced oil recovery. Our analysis of the SACROC production and injection history data suggests that about 93 million metric tons of CO2 were injected and about 38 million metric tons were produced from 1972 to 2005. As a result, a simple mass-balance suggests that the SACROC Unit has accumulated approximately 55 million metric tons of CO2. Our study specifically focuses on the northern platform area of the SACROC Unit where about 7 million metric tons of CO2 is stored. In the model describing the SACROC northern platform, porosity distributions were defined from extensive analyses of both 3-D seismic surveys and calibrated well logging data from 368 locations. Permeability distributions were estimated from determined porosity fields using a rock-fabric classification approach. The developed 3-D geocellular model representing the SACROC northern platform consists of over 9.4 million elements that characterize detailed 3-D heterogeneous reservoir geology. To facilitate simulation using conventional personal computers, we upscaled the 9.4 million elements model using a “renormalization” technique to reduce it to 15,470 elements. Analysis of groundwater chemistry from both the oil production formations (Cisco and Canyon Groups) and the formation above the sealing caprock suggests that the Wolfcamp Shale Formation performs well as a caprock at the SACROC Unit. However, results of geochemical mixing models also suggest that a small amount of shallow groundwater may be contaminated by reservoir brine possibly due to: (1) downward recharge of recycled reservoir brine from brine pits at the surface, or (2) upward leakage of CO2-saturated reservoir brine through the Wolfcamp Shale Formation. Using the upscaled 3-D geocellular model with detailed fluid injection/production history data and a vast amount of field data, we developed two separate models to evaluate competing CO2 trapping mechanisms at the SACROC northern platform. The first model simulated CO2 trapping mechanisms in a reservoir saturated with brine only. The second model simulated CO2 trapping mechanisms in a reservoir saturated with both brine and oil. CO2 trapping mechanisms in the brine-only model show distinctive stages accompanying injection and post-injection periods. In the 30-year injection period from 1972 to 2002, the amount of mobile CO2 increased to 5.0 million metric tons without increasing immobile CO2, and the mass of solubility-trapped CO2 sharply rose to 1.7 million metric tons. After CO2 injection ceased, the amount of mobile CO2 dramatically decreased and the amount of immobile CO2 increased. Relatively small amounts of mineral precipitation (less than 0.2 million metric tons of CO2 equivalent) occurred after 200 years. In the brine-plus-oil model, dissolution of CO2 in oil (oil-solubility trapping) and mobile CO2 dominated during the entire simulation period. While supercritical-phase CO2 is mobile near the injection wells due to the high CO2 saturation, it behaves like residually trapped CO2 because of the small density contrast between oil and CO2. In summary, the brine-only model reflected dominance by residual CO2 trapping over the long term, while CO2 in the brine-plus-oil model was dominated by oil-solubility trapping.


Transport in Porous Media | 2012

Characteristics of Salt-Precipitation and the Associated Pressure Build-Up during CO2 Storage in Saline Aquifers

Kue-Young Kim; Weon Shik Han; Junho Oh; Taehee Kim; Jeong-Chan Kim

Mitigation and control of borehole pressure at the bottom of an injection well is directly related to the effective management of well injectivity during geologic carbon sequestration activity. Researchers have generally accepted the idea that high rates of CO2 injection into low permeability strata results in increased bottom-hole pressure in a well. However, the results of this study suggested that this is not always the case, due to the occurrence of localized salt precipitation adjacent to the injection well. A series of numerical simulations indicated that in some cases, a low rate of CO2 injection into high permeability formation induced greater pressure build-up. This occurred because of the different types of salt precipitation pattern controlled by buoyancy-driven CO2 plume migration. The first type is non-localized salt precipitation, which is characterized by uniform salt precipitation within the dry-out zone. The second type, localized salt precipitation, is characterized by an abnormally high level of salt precipitation at the dry-out front. This localized salt precipitation acts as a barrier that hampers the propagation of both CO2 and pressure to the far field as well as counter-flowing brine migration toward the injection well. These dynamic processes caused a drastic pressure build-up in the well, which decreased injectivity. By modeling a series of test cases, it was found that low-rate CO2 injection into high permeability formation was likely to cause localized salt precipitation. Sensitivity studies revealed that brine salinity linearly affected the level of salt precipitation, and that vertical permeability enhanced the buoyancy effect which increased the growth of the salt barrier. The porosity also affected both the level of localized salt precipitation and dry-out zone extension depending on injection rates. High temperature injected CO2 promoted the vertical movement of the CO2 plume, which accelerated localized salt precipitation, but at the same time caused a decrease in the density of the injected CO2. The combination of these two effects eventually decreased bottomhole pressure. Considering the injectivity degradation, a method is proposed for decreasing the pressure build-up and increasing injectivity by assigning a ‘skin zone’ that represents a local region with a transmissivity different from that of the surrounding aquifer.


Transport in Porous Media | 2012

Modeling of Spatiotemporal Thermal Response to CO 2 Injection in Saline Formations: Interpretation for Monitoring

Weon Shik Han; Kue Young Kim; Eungyu Park; Brian McPherson; Si Yong Lee; Myong Ho Park

We evaluated the thermal processes with numerical simulation models that include processes of solid NaCl precipitation, buoyancy-driven multiphase SCCO2 migration, and potential non-isothermal effects. Simulation results suggest that these processes—solid NaCl precipitation, buoyancy effects, JT cooling, water vaporization, and exothermic SCCO2 reactions—are strongly coupled and dynamic. In addition, we performed sensitivity studies to determine how geologic (heat capacity, brine concentration, porosity, the magnitude and anisotropy of permeability, and capillary pressure) and operational (injection rate and injected SCCO2 temperature) parameters may affect these induced thermal disturbances. Overall, a fundamental understanding of potential thermal processes investigated through this research will be beneficial in the collection and analysis of temperature signals collectively measured from monitoring wells.


Environmental Earth Sciences | 2014

Non-parametric simulations-based conditional stochastic predictions of geologic heterogeneities and leakage potentials for hypothetical CO2 sequestration sites

Weon Shik Han; Kue-Young Kim; Sungwook Choung; Jina Jeong; Na-Hyun Jung; Eungyu Park

The present study focuses on understanding the leakage potentials of the stored supercritical CO2 plume through caprocks generated in geostatistically created heterogeneous media. For this purpose, two hypothetical cases with different geostatistical features were developed, and two conditional geostatistical simulation models (i.e., sequential indicator simulation or SISIM and generalized coupled Markov chain or GCMC) were applied for the stochastic characterizations of the heterogeneities. Then, predictive CO2 plume migration simulations based on stochastic realizations were performed and summarized. In the geostatistical simulations, the results from the GCMC model showed better performance than those of the SISIM model for the strongly non-stationary case, while SISIM models showed reasonable performance for the weakly non-stationary case in terms of low-permeability lenses characterization. In the subsequent predictive simulations of CO2 plume migration, the observations in the geostatistical simulations were confirmed and the GCMC-based predictions showed underestimations in CO2 leakage in the stationary case, while the SISIM-based predictions showed considerable overestimations in the non-stationary case. The overall results suggest that: (1) proper characterization of low-permeability layering is significantly important in the prediction of CO2 plume behavior, especially for the leakage potential of CO2 and (2) appropriate geostatistical techniques must be selectively employed considering the degree of stationarity of the targeting fields to minimize the uncertainties in the predictions.


Water Resources Research | 2015

Migration behavior of supercritical and liquid CO2 in a stratified system: Experiments and numerical simulations

Junho Oh; Kue-Young Kim; Weon Shik Han; Eungyu Park; Jeong-Chan Kim

Multiple scenarios of upward CO2 migration driven by both injection-induced pressure and buoyancy force were investigated in a horizontally and vertically stratified core utilizing a core-flooding system with a 2-D X-ray scanner. Two reservoir-type scenarios were considered: (1) the terrestrial reservoir scenario (10 MPa and 50°C), where CO2 exists in a supercritical state and (2) the deep-sea sediment reservoir scenario (28 MPa and 25°C), where CO2 is stored in the liquid phase. The core-flooding experiments showed a 36% increase in migration rate in the vertical core setting compared with the horizontal setting, indicating the significance of the buoyancy force under the terrestrial reservoir scenario. Under both reservoir conditions, the injected CO2 tended to find a preferential flow path (low capillary entry pressure and high-permeability (high-k) path) and bypass the unfavorable pathways, leaving low CO2 saturation in the low-permeability (low-k) layers. No distinctive fingering was observed as the CO2 moved upward, and the CO2 movement was primarily controlled by media heterogeneity. The CO2 saturation in the low-k layers exhibited a more sensitive response to injection rates, implying that the increase in CO2 injection rates could be more effective in terms of storage capacity in the low-k layers in a stratified reservoir. Under the deep-sea sediment condition, the storage potential of liquid CO2 was more than twice as high as that of supercritical CO2 under the terrestrial reservoir scenario. In the end, multiphase transport simulations were conducted to assess the effects of heterogeneity on the spatial variation of pressure buildup, CO2 saturation, and CO2 flux. Finally, we showed that a high gravity number ( Ngr) tended to be more influenced by the heterogeneity of the porous media.


Science of The Total Environment | 2016

Comparison of physicochemical properties between fine (PM2.5) and coarse airborne particles at cold season in Korea.

Sungwook Choung; Jungsun Oh; Weon Shik Han; Chul Min Chon; Youngsang Kwon; Do Yeon Kim; Woosik Shin

Although it has been well-known that atmospheric aerosols affect negatively the local air quality, human health, and climate changes, the chemical and physical properties of atmospheric aerosols are not fully understood yet. This study experimentally measured the physiochemical characteristics of fine and coarse aerosol particles at the suburban area to evaluate relative contribution to environmental pollution in consecutive seasons of autumn and winter, 2014-2015, using XRD, SEM-EDX, XNI, ICP-MS, and TOF-SIMS. For these experimental works, the fine and coarse aerosols were collected by the high volume air sampler for 7 days each season. The fine particles contain approximately 10 μg m(-3) of carbonaceous aerosols consisting of 90% organic and 10% elemental carbon. The spherical-shape carbonaceous particles were observed for the coarse samples as well. Interestingly, the coarse particles in winter showed the increased frequency of carbon-rich particles with high contents of heavy metals. These results suggest that, for the cold season, the coarse particles could contribute relatively more to the conveyance of toxic contaminants compared to the fine particles in the study area. However, the fine particles showed acidic properties so that their deposition to surface may cause facilitate the increase of mobility for toxic heavy metals in soil and groundwater environments. The fine and coarse particulate matters, therefore, should be monitored separately with temporal variation to evaluate the impact of atmospheric aerosols to environmental pollution and human health.


Journal of Geophysical Research | 2015

Regional-scale advective, diffusive, and eruptive dynamics of CO2 and brine leakage through faults and wellbores

Na-Hyun Jung; Weon Shik Han; Kyungdoe Han; Eungyu Park

Regional-scale advective, diffusive, and eruptive transport dynamics of CO2 and brine within a natural analogue in the northern Paradox Basin, Utah, were explored by integrating numerical simulations with soil CO2 flux measurements. Deeply sourced CO2 migrates through steeply dipping fault zones to the shallow aquifers predominantly as an aqueous phase. Dense CO2-rich brine mixes with regional groundwater, enhancing CO2 dissolution. Linear stability analysis reveals that CO2 could be dissolved completely within only ~500 years. Assigning lower permeability to the fault zones induces fault-parallel movement, feeds up-gradient aquifers with more CO2, and impedes down-gradient fluid flow, developing anticlinal CO2 traps at shallow depths (<300 m). The regional fault permeability that best reproduces field spatial CO2 flux variation is estimated 1 × 10−17 ≤ kh < 1 × 10−16 m2 and 5 × 10−16 ≤ kv < 1 × 10−15 m2. The anticlinal trap serves as an essential fluid source for eruption at Crystal Geyser. Geyser-like discharge sensitively responds to varying well permeability, radius, and CO2 recharge rate. The cyclic behavior of wellbore CO2 leakage decreases with time.


Transport in Porous Media | 2014

Flow Dynamics of \hbox {CO}_{2}/brine at the Interface Between the Storage Formation and Sealing Units in a Multi-layered Model

Kue-Young Kim; Weon Shik Han; Junho Oh; Eungyu Park; Pyeong-Koo Lee

Pressure distribution and CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}


Journal of Contaminant Hydrology | 2017

A predictive estimation method for carbon dioxide transport by data-driven modeling with a physically-based data model

Jina Jeong; Eungyu Park; Weon Shik Han; Kue Young Kim; Seong Chun Jun; Sungwook Choung; Seong Taek Yun; Junho Oh; Hyun Jun Kim


Hydrogeology Journal | 2017

A subagging regression method for estimating the qualitative and quantitative state of groundwater

Jina Jeong; Eungyu Park; Weon Shik Han; Kue-Young Kim

\hbox {CO}_{2}

Collaboration


Dive into the Weon Shik Han's collaboration.

Top Co-Authors

Avatar

Eungyu Park

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jina Jeong

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Kue Young Kim

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junho Oh

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Sungwook Choung

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Na-Hyun Jung

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Meng Lu

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge