Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weontae Lee is active.

Publication


Featured researches published by Weontae Lee.


Nature | 2005

Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone

Pan-Young Jeong; Mankil Jung; Yong-Hyeon Yim; Heekyeong Kim; Moon-Soo Park; Eunmi Hong; Weontae Lee; Young Hwan Kim; Kun Kim; Young-Ki Paik

Pheromones are cell type-specific signals used for communication between individuals of the same species. When faced with overcrowding or starvation, Caenorhabditis elegans secrete the pheromone daumone, which facilitates communication between individuals for adaptation to adverse environmental stimuli. Daumone signals C. elegans to enter the dauer stage, an enduring and non-ageing stage of the nematode life cycle with distinctive adaptive features and extended life. Because daumone is a key regulator of chemosensory processes in development and ageing, the chemical identification of daumone is important for elucidating features of the daumone-mediated signalling pathway. Here we report the isolation of natural daumone from C. elegans by large-scale purification, as well as the total chemical synthesis of daumone. We present the stereospecific chemical structure of purified daumone, a fatty acid derivative. We demonstrate that both natural and chemically synthesized daumones equally induce dauer larva formation in C. elegans (N2 strain) and certain dauer mutants, and also result in competition between food and daumone. These results should help to elucidate the daumone-mediated signalling pathway, which might in turn influence ageing and obesity research and the development of antinematodal drugs.


Nature Structural & Molecular Biology | 1994

Solution structure of the tetrameric minimum transforming domain of p53.

Weontae Lee; Timothy S. Harvey; Ya Yin; Patrick Yau; David W. Litchfield; C.H. Arrowsmith

We report the solution structure of the minimum transforming domain (residues 303–366) of human p53 (p53tet) determined by multidimensional NMR spectroscopy. This domain contains a number of important functions associated with p53 activity including transformation, oligomerization, nuclear localization and a phosphorylation site for p34/cdc2 kinase. p53tet forms a symmetric dimer of dimers that is significantly different from a recent structure reported for a shorter construct of this domain. Phosphorylation of Ser 315 has only minor structural consequences, as this region of the protein is unstructured. Modelling based on the p53tet structure suggests possible modes of interaction between adjacent domains in full-length p53 as well as modes of interaction with DNA.


Proceedings of the National Academy of Sciences of the United States of America | 2002

An NMR approach to structural proteomics

Adelinda Yee; Xiaoqing Chang; Antonio Pineda-Lucena; Bin Wu; Anthony Semesi; Brian V. Le; Theresa A. Ramelot; Gregory Lee; Sudeepa Bhattacharyya; Pablo Gutiérrez; Aleksej Denisov; Chang-Hun Lee; John R. Cort; Guennadi Kozlov; Jack Liao; Grzegorz Finak; Limin Chen; David S. Wishart; Weontae Lee; Lawrence P. McIntosh; Kalle Gehring; Michael A. Kennedy; A. Edwards; C.H. Arrowsmith

The influx of genomic sequence information has led to the concept of structural proteomics, the determination of protein structures on a genome-wide scale. Here we describe an approach to structural proteomics of small proteins using NMR spectroscopy. Over 500 small proteins from several organisms were cloned, expressed, purified, and evaluated by NMR. Although there was variability among proteomes, overall 20% of these proteins were found to be readily amenable to NMR structure determination. NMR sample preparation was centralized in one facility, and a distributive approach was used for NMR data collection and analysis. Twelve structures are reported here as part of this approach, which allowed us to infer putative functions for several conserved hypothetical proteins.


Journal of Biological Chemistry | 1999

Crystal structure of Delta(5)-3-ketosteroid isomerase from Pseudomonas testosteroni in complex with equilenin settles the correct hydrogen bonding scheme for transition state stabilization

Hyun-Soo Cho; Nam-Chul Ha; H.-T. Kim; Donghan Lee; Kyung Seok Oh; Kwang S. Kim; Weontae Lee; Kwan Yong Choi; Byung-Ha Oh

Δ5-3-Ketosteroid isomerase from Pseudomonas testosteroni has been intensively studied as a prototype to understand an enzyme-catalyzed allylic isomerization. Asp38 (pK a ∼4.7) was identified as the general base abstracting the steroid C4β proton (pK a ∼12.7) to form a dienolate intermediate. A key and common enigmatic issue involved in the proton abstraction is the question of how the energy required for the unfavorable proton transfer can be provided at the active site of the enzyme and/or how the thermodynamic barrier can be drastically reduced. Answering this question has been hindered by the existence of two differently proposed enzyme reaction mechanisms. The 2.26 Å crystal structure of the enzyme in complex with a reaction intermediate analogue equilenin reveals clearly that both the Tyr14 OH and Asp99 COOH provide direct hydrogen bonds to the oxyanion of equilenin. The result negates the catalytic dyad mechanism in which Asp99 donates the hydrogen bond to Tyr14, which in turn is hydrogen bonded to the steroid. A theoretical calculation also favors the doubly hydrogen-bonded system over the dyad system. Proton nuclear magnetic resonance analyses of several mutant enzymes indicate that the Tyr14 OH forms a low barrier hydrogen bond with the dienolic oxyanion of the intermediate.


FEBS Letters | 2004

Structure of human PRL-3, the phosphatase associated with cancer metastasis☆

Kyoung-Ah Kim; JinSue Song; JunGoo Jee; Mee Rie Sheen; Chulhyun Lee; Tae Gyu Lee; Seonggu Ro; Joong Myung Cho; Weontae Lee; Toshio Yamazaki; Young Ho Jeon; Chaejoon Cheong

PRL‐3, a novel class protein of prenylated tyrosine phosphatase, is important in cancer metastasis. Due to its high levels of expression in metastatic tumors, PRL‐3 may constitute a useful marker for metastasis and might be a new therapeutic target. Here, we present the solution structure of the phosphatase domain of a human PRL‐3 (residues 1–162) in phosphate‐free state. The nuclear magnetic resonance (NMR) structure of PRL‐3 is similar to that of other known phosphatases with minor differences in the secondary structure. But the conformation and flexibility of the loops comprising the active site differ significantly. When phosphate ions or sodium orthovanadate, which is a known inhibitor, are added to the apo PRL‐3, the NMR signals from the residues in the active site appeared and could be assigned, indicating that the conformation of the residues has been stabilized.


Journal of Biological Chemistry | 2007

Structure of an Atypical Orphan Response Regulator Protein Supports a New Phosphorylation-independent Regulatory Mechanism

Eunmi Hong; Hyang Mi Lee; Hyunsook Ko; Dong-Uk Kim; Byoung-Young Jeon; Jinwon Jung; Joon Shin; Sung-Ah Lee; Yangmee Kim; Young Ho Jeon; Chaejoon Cheong; Hyun-Soo Cho; Weontae Lee

Two-component signal transduction systems, commonly found in prokaryotes, typically regulate cellular functions in response to environmental conditions through a phosphorylation-dependent process. A new type of response regulator, hp1043 (HP-RR) from Helicobacter pylori, has been recently identified. HP-RR is essential for cell growth and does not require the well known phosphorelay scheme. Unphosphorylated HP-RR binds specifically to its own promoter (P1043) and autoregulates the promoter of the tlpB gene (PtlpB). We have determined the structure of HP-RR by NMR and x-ray crystallography, revealing a symmetrical dimer with two functional domains. The molecular topology resembles that of the OmpR/PhoB subfamily, however, the symmetrical dimer is stable even in the unphosphorylated state. The dimer interface, formed by three secondary structure elements (α4-β5-α5), resembles that of the active, phosphorylated forms of ArcA and PhoB. Several conserved residues of the HP-RR dimeric interface deviate from the OmpR/PhoB subfamily, although there are similar salt bridges and hydrophobic patches within the interface. Our findings reveal how a new type of response regulator protein could function as a cell growth-associated regulator in the absence of post-translational modification.


Journal of Biological Chemistry | 2000

Detection of Large Pka Perturbations of an Inhibitor and a Catalytic Group at an Enzyme Active Site, a Mechanistic Basis for Catalytic Power of Many Enzymes

Nam-Chul Ha; Min Sung Kim; Weontae Lee; Kwan Yong Choi; Byung-Ha Oh

Δ5-3-Ketosteroid isomerase catalyzes cleavage and formation of a C–H bond at a diffusion-controlled limit. By determining the crystal structures of the enzyme in complex with each of three different inhibitors and by nuclear magnetic resonance (NMR) spectroscopic investigation, we evidenced the ionization of a hydroxyl group (pK a ∼16.5) of an inhibitor, which forms a low barrier hydrogen bond (LBHB) with a catalytic residue Tyr14(pK a ∼11.5), and the protonation of the catalytic residue Asp38 with pK a of ∼4.5 at pH 6.7 in the interaction with a carboxylate group of an inhibitor. The perturbation of the pK a values in both cases arises from the formation of favorable interactions between inhibitors and catalytic residues. The results indicate that the pK a difference between catalytic residue and substrate can be significantly reduced in the active site environment as a result of the formation of energetically favorable interactions during the course of enzyme reactions. The reduction in the pK a difference should facilitate the abstraction of a proton and thereby eliminate a large fraction of activation energy in general acid/base enzyme reactions. The pK a perturbation provides a mechanistic ground for the fast reactivity of many enzymes and for the understanding of how some enzymes are able to extract a proton from a C–H group with a pK a value as high as ∼30.


Scientific Reports | 2015

Influence of reactive species on the modification of biomolecules generated from the soft plasma

Pankaj Attri; Naresh Kumar; Ji Hoon Park; Dharmendra Kumar Yadav; Sooho Choi; Han S. Uhm; In Tae Kim; Eun Ha Choi; Weontae Lee

Plasma medicine is an upcoming research area that has attracted the scientists to explore more deeply the utility of plasma. So, apart from the treating biomaterials and tissues with plasma, we have studied the effect of soft plasma with different feeding gases such as Air, N2 and Ar on modification of biomolecules. Hence, in this work we have used the soft plasma on biomolecules such as proteins ((Hemoglobin (Hb) and Myoglobin (Mb)), calf thymus DNA and amino acids. The structural changes or structural modification of proteins and DNA have been studied using circular dichroism (CD), fluorescence spectroscopy, protein oxidation test, gel electrophoresis, UV-vis spectroscopy, dynamic light scattering (DLS) and 1D NMR, while Liquid Chromatograph/Capillary Electrophoresis-Mass Spectrometer (LC/CE-MS) based on qualitative and quantitative bio-analysis have been used to study the modification of amino acids. Further, the thermal analysis of the protein has been studied with differential scanning calorimetry (DSC) and CD. Additionally, we have performed docking studies of H2O2 with Hb and Mb, which reveals that H2O2 molecules preferably attack the amino acids near heme group. We have also shown that N2 gas plasma has strong deformation action on biomolecules and compared to other gases plasma.


Journal of Biological Chemistry | 2010

Structural basis of E2-25K/UBB+1 interaction leading to proteasome inhibition and neurotoxicity.

Sunggeon Ko; Gil Bu Kang; Sung Min Song; Jung Gyu Lee; Dong Yeon Shin; Ji Hye Yun; Yi Sheng; Chaejoon Cheong; Young Ho Jeon; Yong-Keun Jung; C.H. Arrowsmith; George V. Avvakumov; Sirano Dhe-Paganon; Yung Joon Yoo; Soo Hyun Eom; Weontae Lee

E2–25K/Hip2 is an unusual ubiquitin-conjugating enzyme that interacts with the frameshift mutant of ubiquitin B (UBB+1) and has been identified as a crucial factor regulating amyloid-β neurotoxicity. To study the structural basis of the neurotoxicity mediated by the E2–25K-UBB+1 interaction, we determined the three-dimensional structures of UBB+1, E2–25K and the E2–25K/ubiquitin, and E2–25K/UBB+1 complex. The structures revealed that ubiquitin or UBB+1 is bound to E2–25K via the enzyme MGF motif and residues in α9 of the enzyme. Polyubiquitylation assays together with analyses of various E2–25K mutants showed that disrupting UBB+1 binding markedly diminishes synthesis of neurotoxic UBB+1-anchored polyubiquitin. These results suggest that the interaction between E2–25K and UBB+1 is critical for the synthesis and accumulation of UBB+1-anchored polyubiquitin, which results in proteasomal inhibition and neuronal cell death.


Journal of Biological Chemistry | 2002

Identification of Domains Directing Specificity of Coupling to G-proteins for the Melanocortin MC3 and MC4 Receptors*

Chung Sub Kim; Soo Hyun Lee; Ryang Yeo Kim; Byung Jin Kim; Song Zhe Li; In Hye Lee; Sung Kil Lim; Yun Soo Bae; Weontae Lee; Ja Hyun Baik

The melanocortin receptors, MC3R and MC4R, are G protein-coupled receptors that are involved in regulating energy homeostasis. Using a luciferase reporter gene under the transcriptional control of a cAMP- responsive element (CRE), the coupling efficiency of the MC4R and MC3R to G-proteins was previously shown to be different. MC4R exhibited only 30–50% of the maximum activity induced by MC3R. To assess the role of the different MC3R and MC4R domains in G-protein coupling, several chimeric MC3R/MC4R receptors were constructed. The relative luciferase activities, which were assessed after transfecting the chimeric receptors into HEK 293T cells, showed that the i3 (3rd intracellular) loop domain has an essential role in the differential signaling of MC3R and MC4R. To reveal which amino acid residue was involved in the MC4R-specific signaling in the i3 loop, a series of mutant MC4Rs was constructed. Reporter gene analysis showed that single mutations of Arg220 to Ala and Thr232 to either Val or Ala increased the relative luciferase activities, which suggests that these specific amino acids, Arg220 and Thr232, in the i3 loop of MC4R play crucial roles in G-protein coupling and the subtype-specific signaling pathways. An examination of the inositol phosphate (IP) levels in the cells transfected with either MC3R or MC4R after being exposed to the melanocortin peptides revealed significant stimulation of IP production by MC3R but no detectable increase in IP production was observed by MC4R. Furthermore, none of the MC4R mutants displayed melanocortin peptide-stimulated IP production. Overall, this study demonstrated that MC3R and MC4R have distinct signaling in either the cAMP- or the inositol phospholipid-mediated pathway with different conformational requirements.

Collaboration


Dive into the Weontae Lee's collaboration.

Top Co-Authors

Avatar

Jinwon Jung

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joon Shin

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge