Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Werner Breitenstein is active.

Publication


Featured researches published by Werner Breitenstein.


Future Medicinal Chemistry | 2011

Recent trends and observations in the design of high-quality screening collections

Steffen Renner; Maxim Popov; Ansgar Schuffenhauer; Hans-Joerg Roth; Werner Breitenstein; Andreas Marzinzik; Ian Lewis; Philipp Krastel; Florian Nigsch; Jeremy L. Jenkins; Edgar Jacoby

The design of a high-quality screening collection is of utmost importance for the early drug-discovery process and provides, in combination with high-quality assay systems, the foundation of future discoveries. Herein, we review recent trends and observations to successfully expand the access to bioactive chemical space, including the feedback from hit assessment interviews of high-throughput screening campaigns; recent successes with chemogenomics target family approaches, the identification of new relevant target/domain families, diversity-oriented synthesis and new emerging compound classes, and non-classical approaches, such as fragment-based screening and DNA-encoded chemical libraries. The role of in silico library design approaches are emphasized.


Bone | 2011

ATF936, a novel oral calcilytic, increases bone mineral density in rats and transiently releases parathyroid hormone in humans.

Markus R. John; Leo Widler; Rainer Gamse; Thomas Buhl; Klaus Seuwen; Werner Breitenstein; Gerard Bruin; Rossella Belleli; Lloyd B. Klickstein; Michaela Kneissel

Parathyroid hormone (PTH), when injected daily as either the intact hormone PTH(1-84) or the active fragment PTH(1-34) (teriparatide), is an efficacious bone anabolic treatment option for osteoporosis patients. Injections lead to rapid and transient spikes in hormone exposure levels, a profile which is a prerequisite to effectively form bone. Oral antagonists of the calcium-sensing receptor (calcilytics) stimulate PTH secretion and represent thus an alternative approach to elevate hormone levels transiently. We report here on ATF936, a novel calcilytic, which triggered rapid, transient spikes in endogenous PTH levels when given orally in single doses of 10 and 30mg/kg to growing rats, and of 1mg/kg to dogs. Eight weeks daily oral application of 30mg/kg of ATF936 to aged female rats induced in the proximal tibia metaphysis increases in bone mineral density, cancellous bone volume and cortical and trabecular thickness as evaluated by computed tomography. In healthy humans, single oral doses of ATF936 produced peak PTH levels in plasma after a median time of 1h and levels returned to normal at 24-h post-dose. The average maximum PTH concentration increase from baseline was 1.9, 3.6, and 6.0-fold at doses of 40, 70, and 140mg. ATF936 was well tolerated. The sharp, transient increase in PTH levels produced by the oral calcilytic ATF936 was comparable to the PTH profile observed after subcutaneous administration of teriparatide. In conclusion, ATF936 might hold potential as an oral bone-forming osteoporosis therapy.


Journal of Medicinal Chemistry | 2010

1-Alkyl-4-phenyl-6-alkoxy-1H-quinazolin-2-ones: a novel series of potent calcium-sensing receptor antagonists.

Leo Widler; Eva Altmann; Rene Beerli; Werner Breitenstein; Rochdi Bouhelal; Thomas Buhl; Rainer Gamse; Marc Gerspacher; Christine Halleux; Markus R. John; Hansjoerg Lehmann; Oskar Kalb; Michaela Kneissel; Martin Missbach; Irene R. Müller; Sibylle Reidemeister; Johanne Renaud; Agnes Taillardat; Ruben Tommasi; Sven Weiler; Romain M. Wolf; Klaus Seuwen

Parathyroid hormone (PTH) is an effective bone anabolic agent. However, only when administered by daily sc injections exposure of short duration is achieved, a prerequisite for an anabolic response. Instead of applying exogenous PTH, mobilization of endogenous stores of the hormone can be envisaged. The secretion of PTH stored in the parathyroid glands is mediated by a calcium sensing receptor (CaSR) a GPCR localized at the cell surface. Antagonists of CaSR (calcilytics) mimic a state of hypocalcaemia and stimulate PTH release to the bloodstream. Screening of the internal compound collection for inhibition of CaSR signaling function afforded 2a. In vitro potency could be improved >1000 fold by optimization of its chemical structure. The binding mode of our compounds was predicted based on molecular modeling and confirmed by testing with mutated receptors. While the compounds readily induced PTH release after iv application a special formulation was needed for oral activity. The required profile was achieved by using microemulsions. Excellent PK/PD correlation was found in rats and dogs. High levels of PTH were reached in plasma within minutes which reverted to baseline in about 1-2 h in both species.


Journal of Medicinal Chemistry | 2013

A Novel Class of Oral Direct Renin Inhibitors: Highly Potent 3,5-Disubstituted Piperidines Bearing a Tricyclic P3–P1 Pharmacophore

Nils Ostermann; Simon Ruedisser; Claus Ehrhardt; Werner Breitenstein; Andreas Marzinzik; Edgar Jacoby; Eric Vangrevelinghe; Johannes Ottl; Martin Klumpp; J. Constanze D. Hartwieg; Frederic Cumin; Ulrich Hassiepen; Jörg Trappe; Richard Sedrani; Sabine Geisse; Bernd Gerhartz; Paul Richert; Eric Francotte; Trixie Wagner; Markus Krömer; Takatoshi Kosaka; Randy Lee Webb; Dean F. Rigel; Jürgen Maibaum; Daniel Kaspar Baeschlin

A small library of fragments comprising putative recognition motifs for the catalytic dyad of aspartic proteases was generated by in silico similarity searches within the corporate compound deck based on rh-renin active site docking and scoring filters. Subsequent screening by NMR identified the low-affinity hits 3 and 4 as competitive active site binders, which could be shown by X-ray crystallography to bind to the hydrophobic S3-S1 pocket of rh-renin. As part of a parallel multiple hit-finding approach, the 3,5-disubstituted piperidine (rac)-5 was discovered by HTS using a enzymatic assay. X-ray crystallography demonstrated the eutomer (3S,5R)-5 to be a peptidomimetic inhibitor binding to a nonsubstrate topography of the rh-renin prime site. The design of the potent and selective (3S,5R)-12 bearing a P3(sp)-tethered tricyclic P3-P1 pharmacophore derived from 3 is described. (3S,5R)-12 showed oral bioavailability in rats and demonstrated blood pressure lowering activity in the double-transgenic rat model.


ACS Medicinal Chemistry Letters | 2015

Optimization of a Dibenzodiazepine Hit to a Potent and Selective Allosteric PAK1 Inhibitor.

Alexei Karpov; Payman Amiri; Cornelia Bellamacina; Marie-Helene Bellance; Werner Breitenstein; Dylan Daniel; Regis Denay; Doriano Fabbro; César Fernández; Inga Galuba; Stephanie Guerro-Lagasse; Sascha Gutmann; Linda Hinh; Wolfgang Jahnke; Julia Klopp; Albert Lai; Mika Lindvall; Sylvia Ma; Henrik Möbitz; Sabina Pecchi; Gabriele Rummel; Kevin Shoemaker; Joerg Trappe; Charles Voliva; Sandra W. Cowan-Jacob; Andreas Marzinzik

The discovery of inhibitors targeting novel allosteric kinase sites is very challenging. Such compounds, however, once identified could offer exquisite levels of selectivity across the kinome. Herein we report our structure-based optimization strategy of a dibenzodiazepine hit 1, discovered in a fragment-based screen, yielding highly potent and selective inhibitors of PAK1 such as 2 and 3. Compound 2 was cocrystallized with PAK1 to confirm binding to an allosteric site and to reveal novel key interactions. Compound 3 modulated PAK1 at the cellular level and due to its selectivity enabled valuable research to interrogate biological functions of the PAK1 kinase.


ACS Medicinal Chemistry Letters | 2014

Structure-based design of substituted piperidines as a new class of highly efficacious oral direct Renin inhibitors.

Takeru Ehara; Osamu Irie; Takatoshi Kosaka; Takanori Kanazawa; Werner Breitenstein; Philipp Grosche; Nils Ostermann; Masaki Suzuki; Shimpei Kawakami; Kazuhide Konishi; Yuko Hitomi; Atsushi Toyao; Hiroki Gunji; Frederic Cumin; Nikolaus Schiering; Trixie Wagner; Dean F. Rigel; Randy Lee Webb; Jürgen Maibaum; Fumiaki Yokokawa

A cis-configured 3,5-disubstituted piperidine direct renin inhibitor, (syn,rac)-1, was discovered as a high-throughput screening hit from a target-family tailored library. Optimization of both the prime and the nonprime site residues flanking the central piperidine transition-state surrogate resulted in analogues with improved potency and pharmacokinetic (PK) properties, culminating in the identification of the 4-hydroxy-3,5-substituted piperidine 31. This compound showed high in vitro potency toward human renin with excellent off-target selectivity, 60% oral bioavailability in rat, and dose-dependent blood pressure lowering effects in the double-transgenic rat model.


Bioorganic & Medicinal Chemistry Letters | 2010

New pyrazolo[1,5a]pyrimidines as orally active inhibitors of Lck

Nina Gommermann; Peter Buehlmayer; Anette Von Matt; Werner Breitenstein; Keiichi Masuya; Bernard Pirard; Pascal Furet; Sandra W. Cowan-Jacob; Gisbert Weckbecker

A novel series of pyrazolo[1,5a]pyrimidines was optimized to target lymphocyte-specific kinase (Lck). An efficient synthetic route was developed and SAR studies toward activity and selectivity are described, leading to Lck inhibitors with enzymatic, cellular and in vivo potency.


Cancer Cell | 2005

Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl

Ellen Weisberg; Paul W. Manley; Werner Breitenstein; Josef Brüggen; Sandra W. Cowan-Jacob; Arghya Ray; Brian J. P. Huntly; Doriano Fabbro; Gabriele Fendrich; Elizabeth Hall-Meyers; Andrew L. Kung; George Q. Daley; Linda Callahan; Laurie Catley; Cara Cavazza; Azam Mohammed; Donna Neuberg; Renee D. Wright; D. Gary Gilliland; James D. Griffin


Archive | 2003

Inhibitors of tyrosine kinases

Werner Breitenstein; Pascal Furet; Sandra Jacob; Paul W. Manley


Archive | 2007

N-phenyl-2-pyrimidine-amine derivatives

Hans Michael Buerger; Giorgio Caravatti; Juerg Zimmermann; Paul W. Manley; Werner Breitenstein; Margaret Amelia Cudd

Collaboration


Dive into the Werner Breitenstein's collaboration.

Researchain Logo
Decentralizing Knowledge