Werner Einig
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Werner Einig.
Trees-structure and Function | 1997
Stefan Maurer; Rainer Matyssek; Madeleine S. Günthardt-Goerg; Werner Landolt; Werner Einig
Abstract Cuttings of a single birch clone (Betula pendula) were grown in field fumigation chambers throughout the growing season in either filtered air (control) or 90/40 nl O3 l–1 (day/night). Both regimes were split into plants under high and low nutrient supply (macro- and micronutrients). The stomatal density of leaves was increased by ozone but was lowered at high nutrition, while the inner air space was hardly affected by the treatments. Ozone induced macroscopic leaf injury regardless of nutrition, but leaf shedding was delayed in the low-fertilized plants, despite O3 uptake being similar to that in high-fertilized plants. The leaf turn-over was enhanced in the O3-exposed high-fertilized plants, but length growth and leaf formation of stems were not affected by ozone in either nutrient regime. Leaves of high-fertilized plants showed O3-caused decline in photosynthetic capacity, water-use efficiency, apparent carbon uptake efficiency and quantum yield earlier as compared with low-fertilized plants, whereas chlorophyll fluorescence (FV/FM) and leaf nitrogen concentration were rather stable. CO2 uptake rate and rubisco activity of young leaves compensated for the O3 injury in the ageing leaves of the low-fertilized plants. In 8-week-old leaves, however, the O3-induced decline in CO2 uptake did not differ between the nutrient regimes and was associated with increased dark respiration rather than changed photorespiration. The balance between CO2 supply and demand was lost, as was stomatal limitation on CO2 uptake. High nutrition did not help leaves to maintain a high photosynthetic capacity and life span under O3 stress.
Plant and Soil | 1996
Thomas Wallenda; Christoph Schaeffer; Werner Einig; Astrid Wingler; Rüdiger Hampp; Bettina Seith; Eckhard George; Horst Marschner
The response of carbohydrate metabolism in 3-year-old Norway spruce plants to an increased amount of nitrogen supply to a N-poor forest soil was investigated in a pot experiment. After 7 months of treatment we found a decreased amount of starch in both needles and roots, together with decreased amounts of sucrose in needles of those plants grown under an enhanced inorganic N supply. In addition, the activity and the protein amount of the anaplerotic enzyme phosphoenolpyruvate carboxylase (PEPC) and the activity of NADP-dependent isocitrate dehydrogenase (IDH) were clearly increased. The activity of sucrose phosphate synthase (SPS) and the pool size of fructose 2,6-bisphosphate (F26BP) were not affected by high supply of inorganic N. These data indicate a shift of carbon flow from starch formation towards an enhanced provision of carbon skeletons for N assimilation and shoot growth. In parallel, we found decreased contents of fungus-specific compounds (ergosterol, mannitol, trehalose) in roots, which are indicators of a decreased colonization by ectomycorrhizal fungi, probably as a result of a changed allocation and partitioning of photoassimilates due to an increased N supply.
Trees-structure and Function | 1990
Werner Einig; Rüdiger Hampp
SummaryIntermediates involved in carbon partitioning between starch and sucrose [dihydroxyacetone phosphate + glyceraldehyde 3-phosphate (TP), 3-phosphoglyceric acid, fructose 6-phosphate (F6P), fructose 2,6-bisphosphate (F26BP), in addition to glucose, fructose, sucrose and starch] were analysed in lyophilized needles of Norway spruce (Picea abies L. Karst). Samples were taken from all distinct parts of first and second order branches and the analysed data related to season, needle age, needle position and degree of needle loss (control and class 2 approx. 30%–40% needle loss). Positive and inverse correlations of F26BP, an important regulator of carbon partitioning between starch and sucrose, and F6P or TP existed in all samples. F26BP levels were highest in developing needles and gradually decreased during maturation, which is possibly indicative of changes in the relative sink strength during development (switch from import to export of sucrose). In class 2 needles the amount of F26BP was significantly increased. Together with nearly unaltered levels of sucrose but only slightly decreased amounts of starch the results can be taken as evidence for impaired carbon export in our class 2 samples. The data are discussed with respect to needle development and a possible impact of both air pollutants and mineral deficiency at the location from which the samples were taken.
Developments in crop science | 2000
Elisabeth Magel; Werner Einig; Rüdiger Hampp
Nonstructural carbohydrates are important back bones of life strategies of long-living trees. In conifers and broadleaf trees, sucrose, glucose, and fructose constitute the dominating soluble, starch the pivotal non-soluble storage carbohydrates. Sucrose is the preferred transport sugar. In addition, species-specific sugar alcohols can be found. Like in herbaceous plants, photoassimilates are allocated from green (source) tissues to nongreen (sink) areas. In addition, leaves of evergreen trees do not only deliver carbohydrates but can also serve as storage organs. Woody axes (branches and the trunk) are not only involved in long distance transport (bark) of carbon. The living wood tissues (sapwood) and the bark are also the major storage compartments of carbon. During heartwood formation, carbohydrates sustain the formation of phenolic extractives, components which ascribe for the natural durability of wood. As roots of most trees are part of plant microbe interactions (mycorrhiza), their carbohydrate status and the role of sugars in this interaction is also of importance. Allocation and partitioning of carbohydrates between and within the individual organs of a tree depend on ontogenetic (eg stage of organ maturation) and environmental (eg mineral nutrition, toxic gases, climate, pathogenic and symbiotic interactions) impacts.
Plant Physiology | 1996
Anja Loewe; Werner Einig; Rüdiger Hampp
Annual changes of activity of sucrose-phosphate synthase (SPS) from spruce (Picea abies [L.] Karst.) needles were studied with respect to three regulatory levels: metabolic fine control, covalent modification (phosphorylation), and protein amount. Glucose-6-phosphate served as an allosteric activator of spruce SPS by shifting the Michaelis constant for the substrate fructose-6-phosphate from 4.2 to 0.59 mM, whereas inorganic phosphate competitively inhibited this activation. The affinity for the other substrate, UDP-glucose, was unaffected. Incubation of the crude extract with ATP resulted in a time- and concentration-dependent decrease of the maximal velocity of SPS. This inactivation was sensitive to staurosporine, a potent protein kinase inhibitor, indicating the participation of a protein kinase. Probing SPS protein with heterologous antibodies showed that the subunit of spruce SPS is an approximately 139-kD protein and that changes in the extractable activity during the course of a year were correlated with the amount of SPS protein. High SPS activities in winter were paralleled by increased levels of the activator glucose-6-phosphate and the substrate fructose-6-phosphate, indicating a high capacity for sucrose synthesis that may be necessary to maintain photosynthetic CO2 fixation in cold-hardened spruce needles.
Plant Ecology | 1999
Werner Einig; Andrea Mertz; Rüdiger Hampp
Seedlings of Brazil pine, a large-seeded South American conifer, were grown in a climate chamber to investigate vertical growth pattern and the time course of leaf development. We examined shoot growth, photosynthetic performance and markers of leaf maturation such as contents of soluble sugars and activities of sucrose-phosphate synthase (SPS), neutral invertase (nI) and sucrose synthase (Susy). The daily increment of shoot length showed an optimum curve during the first 70 days after germination. The low growth rate during the first 20 days of development correlated with net CO2 emission of the seedling. Analyses of leaf maturation markers in older seedlings revealed low sucrose/hexose ratios and high activities of nI and Susy in the uppermost leaves. Although the SPS/Susy ratio was low in these leaves the extractable SPS activity did not change significantly among leaves of different age. The photosynthetic light compensation points of young leaves were about 2-fold higher than those of mature leaves and their photosynthetic capacity was only 50% as high. Our results indicate that a rapid maturation of leaves of Brazil pine seedlings may reduce the respiratory loss of carbohydrates and that the mobilisation of seed storage compounds supports initial shoot growth under light-limiting conditions which may occur in the forest-grassland succession zone.
Trees-structure and Function | 1990
P. Weidmann; Werner Einig; B. Egger; Rüdiger Hampp
SummaryPool sizes of ATP and ADP were analysed in freeze-stopped, lyophilised homogenates of needles from Norway spruce [Picea abies (L.) Karst.]. Control experiments in which possible changes in adenylate pools during sample acquisition were investigated did not reveal significant differences between needles taken from branches in situ or within a 30-min period after cutting off a branch. In addition, pool sizes of ADP and ATP were not affected by changes in light intensity (between 60 and 1500 μE*-m-2*s-1), which inevitably occur when samples have to be taken from the upper region of older trees. Levels of ATP and ADP showed considerable seasonal changes (May through October) with the highest ratios of ATP/ADP in developing needles. In general, there was a tendency towards increased ratios of ATP/ADP with increasing needle age. This observation was corroborated by analyses of needles from spruce trees of different age and growing under different conditions. Needles from declining trees or from trees specifically fumigated with low concentrations of ozone and sulphur dioxide had significantly increased ratios of ATP/ADP compared to controls. The results are discussed with respect to physiological responses connected with natural senescence and induced ageing.
Environmental Pollution | 1990
Rüdiger Hampp; Werner Einig; B. Egger
Metabolite pools were determined in lyophilized homogenates of one- to three-year-old needles from 13-year-old spruce trees. These were exposed in open-chambers for five consecutive years to SO(2) (30 microg m(-3)) and O(3) (50 to 180 microg m(-3)), singly and in combination. The samples were taken shortly before bud break (mid-March). The energy (ATP/ADP) and redox status (NAD(P)H/NAD(P)) increased with needle age. This increase was most pronounced in needles exposed to both pollutant gases. To evaluate carbohydrate metabolism, levels of starch, sugars (sucrose, fructose, glucose), sugar phosphates (dihydroxyacetone phosphate, glyceraldehyde 3-phosphate (triose phosphates, TP), fructose 6-phosphate, fructose 2,6-bisphosphate: F2,6BP) and 3-phosphoglyceric acid (PGA) were measured. The concentrations of starch, glucose, fructose and TP on a dry weight basis increased with needle age, while those of sucrose and F2,6BP decreased. Interestingly, the total amount of soluble sugars remained constant in needles from control chambers and large fluctuations mainly occurred after a single application of the pollutants. Needles from fumigated trees generally showed somewhat lower starch and sugar, and fructose 6-phosphate levels. The content of TP increased with needle age while that of sucrose and F2,6BP decreased. This inverse behavior was even more prominent in the presence of both pollutants and is discussed in the context of recent knowledge on the regulation of carbon partitioning. There was a significant increase in the ratio of TP/PGA in samples from the combined exposure treatments. This also indicates an increase in the redox charge and corroborates the data on both the redox status of the pyridine nucleotide system and the significantly increased ATP/ADP ratio. The results are indicative of a switch in metabolism, from anabolic to predominantly catabolic reactions, which is most pronounced in the samples fumigated with both O(3) and SO(2). The data are compared to those obtained from naturally exposed trees in the southern Black Forest (Kälbelescheuer/Haldenhof, near Freiburg, Germany).
New Phytologist | 1997
Werner Landolt; Madeleine S. Günthardt-Goerg; I. Pfenninger; Werner Einig; Rüdiger Hampp; Stefan Maurer; Rainer Matyssek
Plant and Soil | 1996
Bettina Seith; Eckhard George; Horst Marschner; Thomas Wallenda; Christoph Schaeffer; Werner Einig; Astrid Wingler; Rüdiger Hampp