Werner Jüptner
University of Stuttgart
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Werner Jüptner.
Measurement Science and Technology | 2002
Ulf Schnars; Werner Jüptner
This article describes the principles and major applications of digital recording and numerical reconstruction of holograms (digital holography). Digital holography became feasible since charged coupled devices (CCDs) with suitable numbers and sizes of pixels and computers with sufficient speed became available. The Fresnel or Fourier holograms are recorded directly by the CCD and stored digitally. No film material involving wet-chemical or other processing is necessary. The reconstruction of the wavefield, which is done optically by illumination of a hologram, is performed by numerical methods. The numerical reconstruction process is based on the Fresnel–Kirchhoff integral, which describes the diffraction of the reconstructing wave at the micro-structure of the hologram. In the numerical reconstruction process not only the intensity, but also the phase distribution of the stored wavefield can be computed from the digital hologram. This offers new possibilities for a variety of applications. Digital holography is applied to measure shape and surface deformation of opaque bodies and refractive index fields within transparent media. Further applications are imaging and microscopy, where it is advantageous to refocus the area under investigation by numerical methods.
Applied Optics | 1999
Christoph Wagner; Sönke Seebacher; Wolfgang Osten; Werner Jüptner
Advantages of the lensless Fourier holography setup for the reconstruction of digitally recorded holograms in holographic interferometry are presented. This very simple setup helps to achieve a maximum lateral resolution of the object under investigation. Also, the numerical-reconstruction algorithm is very simple and fast to compute. A mathematical model based on Fourier optics is used to describe discretization effects and to determine the lateral resolution. The recording and the reconstruction processes are regarded as an optical imaging system, and the point-spread function is calculated. Results are verified by an experimental setup for a combined shape and deformation measurement.
Optics Letters | 2002
Wolfgang Osten; Torsten Baumbach; Werner Jüptner
We described a method for direct holographic comparison of the shape or the deformation of two objects when it is not necessary that both samples be located at the same place. In contrast to the well-known incoherent techniques based on inverse fringe projection, this new approach uses a coherent mask that is imaged onto a sample object that has a microstructure different from that of the master object. The coherent mask is created by digital holography to permit instant access to complete optical information on the master object at any wanted place. Transmission of the digital master holograms to the relevant places can be made with a broadband digital telecommunication network such as the Internet.
Applied Optics | 1994
Ulf Schnars; Werner Jüptner
The fundamentals of digital recording and mathematical reconstruction of Fresnel holograms are described. The object is recorded in two different states, and the holograms are stored electronically with a charge-coupled-device detector. In the process of reconstruction the digitally sampled holograms are applied to the different coherent optical methods as hologram interferometry and shearography. If the holograms are superimposed and reconstructed jointly, a holographic interferogram results. If a shearing is introduced in the reconstruction process, a shearogram results. This means that the evaluation technique, e.g., hologram interferometry or shearography, can be influenced by numerical methods.
Optics and Lasers in Engineering | 2001
S Seebacher; Wolfgang Osten; T Baumbach; Werner Jüptner
Abstract Progresses in microsystem technology promise a lot of new applications in industry and research. However, the increased complexity of the microsystems demand sensitive and robust measurement techniques. Fullfield and non invasive methods are desirable to get access to spatially resolved material properties and parameters. This contribution describes a simple and fast interferometric method for the analysis of shape and deformation of small objects by optical means. These quantities together with a well defined loading of the components can be the starting point for the determination of material parameters like Poisson-ratio, Youngs modulus or the thermal expansion coefficient. Holographic interferometry and multiple wavelength contouring as well as multiple source point contouring are precise enough to fulfill the requests for precision and resolution in microsystem technology even on complex shaped structures with steps or gaps A new adaptive, iterative algorithm is developed and applied to the measured results that allows the numerical evaluation of the phase data to get absolute shape and deformation information in Cartesian coordinates. Surfaces with holes, gaps and steps can be registered without any ambiguities. Digital holography as the underlying holographic recording mechanism is extremely suitable for small objects and lead to simple and compact setups in which the objects’ shape as well as their deformation behavior can be recorded. Experiments using silicon microbeams and an object from fine mechanics are described to show the great potential of these fast and robust measurement techniques with respect to the determination of material parameters.
Applied Optics | 2006
Torsten Baumbach; Ervin Kolenovic; Volker Kebbel; Werner Jüptner
Speckle pattern decorrelation reduces the accuracy of interferometric shape and deformation measurements. We introduce a technique for the reduction of speckle noise in digital holography. The method is not based on classical filtering techniques such as median filters. Instead it utilizes the shift theorem of the Fourier transform. For this method several holograms of the same object under test are recorded. The reconstruction leads to a set of object wave fields with different speckle patterns. A proper averaging procedure, taking into account the properties of the wrapped phases, leads to an improvement of the accuracy in the resulting phase difference. The theory of the applied method is described and our first results for technical components with an improvement of accuracy up to 1/57 of the wavelength are presented.
Applied Optics | 2006
Torsten Baumbach; Wolfgang Osten; Christoph von Kopylow; Werner Jüptner
A method for the remote comparison of objects with regard to their shape or response to a load is presented. The method allows interferometric sensitivity for comparing objects with different microstructure. In contrast to the well-known incoherent techniques based on inverse fringe projection this new approach uses the coherent optical wave field of the master object as a mask for the illumination of the sample object. The coherent mask is created by digital holography to allow instant access to the complete optical information of the master object at any place desired. The mask is reconstructed by a spatial light modulator (SLM). The optical reconstruction of digital holograms with SLM technology allows modification of reconstructed wavefronts with respect to improvement of image quality, the skilled introduction of additional information about the object (augmented reality), and the alignment of the master and test object.
Applied Optics | 1995
J. Pomarico; Ulf Schnars; H.-J. Hartmann; Werner Jüptner
We present a new method for displaying light in flight. Fresnel holograms are recorded directly on a CCD sensor, electronically stored, and numerically reconstructed. Experimental results are shown. From different parts of a single holographic recording, different views of a wave front can be reconstructed. This means that the temporal evolution of a wave front can be observed by numerical methods.
Optical Metrology in Production Engineering | 2004
Wansong Li; Thorsten Bothe; Christoph von Kopylow; Werner Jüptner
Many optical metrology methods deliver 2D fields of gradients, such as shearography, Shack-Hartmann sensors and the fringe reflection technique that produce gradients for deformation, wave-front shape and object shape, respectively. The evaluation for gradient data usually includes data processing, feature extraction and data visualization. The matters of this talk are optimized and robust processing methods to handle and prepare the measured gradients. Special attention was directed to the fact that optical measurements typically produce data far from ideal behavior and that parts of the measured area are usually absent or invalid. A robust evaluation must be capable to deliver reliable results with non perfect data and the evaluation speed should be sufficient high for industrial applications. Possible data analysis methods for gradients are differentiation and further integration as well as vector processing when orthogonal gradients are measured. Evaluation techniques were investigated and optimized (e.g. for effective bump and dent analysis). Key point of the talk will be the optimized data integration that delivers the potential of measured gradients. I.e. for the above mentioned examples: the deformation, wave-front and object shape are delivered by successful data integration. Local and global existing integration methods have been compared and the optimum techniques were combined and improved for an accelerated and robust integration technique that is able to deal with complicated data validity masks and noisy data with remaining vector rotation which normally defeats a successful integration. The evaluation techniques are compared, optimized and results are shown for data from shearography and the fringe reflection technique (, which is demonstrated in talk “High Resolution 3D Shape Measurement on Specular Surfaces by Fringe Reflection”).
Applied Optics | 2003
Ervin Kolenovic; Wolfgang Osten; Reiner Klattenhoff; Songcan Lai; Christoph von Kopylow; Werner Jüptner
A miniaturized sensor head for endoscopic measurements based on digital holography is described. The system was developed to measure the shape and the three-dimensional deformation of objects located at places to which there is no access by common measurement systems. A miniaturized optical sensor, including a complete digital holographic interferometer with a CCD camera, is placed at the end of a flexible endoscope. The diameter of the head is smaller than 10 mm. The system enables interferometric measurements to be made at speeds of as many as five reconstructions per second, and it can be used outside the laboratory under normal environmental conditions. Shape measurements are performed with two wavelengths for contouring, and the deformation is measured by digital holographic interferometry. To obtain full three-dimensional data in displacement measurements we illuminate the object sequentially from three different illumination directions. To increase the lateral resolution we use temporal phase shifting.