Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Werner Kloas is active.

Publication


Featured researches published by Werner Kloas.


Annals of the New York Academy of Sciences | 2009

Endocrine disruption in aquatic vertebrates.

Werner Kloas; Ralph Urbatzka; Robert Opitz; Sven Würtz; Thomas Behrends; Björn Hermelink; Frauke Hofmann; Oana Jagnytsch; Hana Kroupova; Claudia Lorenz; Nadja Neumann; Constanze Pietsch; Achim Trubiroha; Christoph Van Ballegooy; Caterina Wiedemann; Ilka Lutz

Environmental compounds can interfere with endocrine systems of wildlife and humans. The main sink of such substances, called endocrine disrupters (ED), are surface waters. Thus, aquatic vertebrates, such as fish and amphibians, are most endangered. ED can adversely affect reproductive biology and the thyroid system. ED act by (anti)estrogenic and (anti)androgenic modes of action, resulting in abnormal sexual differentiation and impaired reproduction. These effects are mainly driven by direct interferences of ED with sex steroid receptors rather than indirectly by impacting synthesis and bioavailability of sex steroids, which in turn might affect the hypothalamic–pituitary–gonadal axis. Recent findings reveal that, in addition to the human‐produced waste of ED, natural sources, such as parasites and decomposition of leaves, also might act as ED, markedly affecting sexual differentiation and reproduction in fish and amphibians. Although the thyroid system has essential functions in both fish and amphibians, amphibian metamorphosis has been introduced as the most sensitive model to detect thyroidal ED; no suitable fish model exists. Whereas ED may act primarily on only one specific endocrine target, all endocrine systems will eventually be deregulated as they are intimately connected to each other. The recent ecotoxicological issue of pharmaceutically active compounds (PhACs) present in the aquatic environment indicates a high potential for further endocrine modes of action on aquatic vertebrates by ED derived from PhACs, such as glucocorticoids, progestins, and ß‐agonists.


Environmental Toxicology and Chemistry | 2005

Description and initial evaluation of a Xenopus metamorphosis assay for detection of thyroid system‐disrupting activities of environmental compounds

Robert Opitz; Thomas Braunbeck; Christian Bögi; Daniel B. Pickford; Gerrit Nentwig; Jörg Oehlmann; Osamu Tooi; Ilka Lutz; Werner Kloas

A need is recognized for the development and evaluation of bioassays for detection of thyroid system-disrupting compounds. The issue of testing for thyroid disruption can be addressed by exploiting amphibian metamorphosis as a biological model. In the present study, a test protocol for a Xenopus metamorphosis assay (XEMA) was developed and its interlaboratory transferability was evaluated in an informal ring test with six laboratories participating. In the XEMA test, exposure of Xenopus laevis tadpoles was initiated at stages 48 to 50 and continued for 28 d. Development and growth of tadpoles were assessed by means of developmental stage and whole body length determinations, respectively. For initial test protocol evaluation, thyroxine (T4), and propylthiouracil (PTU) were used as positive controls for thyroid system-modulating activity, and ethylenethiourea (ETU) was used as a test compound. Exposure of tadpoles to 1 microg/L T4 produced a significant acceleration of metamorphosis whereas PTU concentrations of 75 and 100 mg/L completely inhibited metamorphosis. Five different ETU concentrations (5, 10, 25, 50, and 100 mg/L) were tested and a concentration-dependent inhibition of metamorphosis was observed. None of the compounds affected tadpole survival, and only PTU caused a slight retardation in tadpole growth. This study demonstrates that the XEMA test provides a sensitive, robust, and practical testing approach for detection of compounds with both agonistic and antagonistic effects on the thyroid system in Xenopus tadpoles.


Environmental Science & Technology | 2015

The Challenge Presented by Progestins in Ecotoxicological Research: A Critical Review

Vimal Kumar; Andrew C. Johnson; Achim Trubiroha; Jitka Tumová; Masaru Ihara; Roman Grabic; Werner Kloas; Hiroaki Tanaka; Hana Kroupova

Around 20 progestins (also called gestagens, progestogens, or progestagens) are used today in assisting a range of medical conditions from endometrial cancer to uterine bleeding and as an important component of oral contraception. These progestins can bind to a wide range of receptors including progestin, estrogen, androgen, glucocorticoid, and mineralocorticoid receptor, as well as sex hormone and corticosteroid binding globulins. It appears that only five of these (four synthetic and one natural) progestins have so far been studied in sewage effluent and surface waters. Analysis has reported values as either nondetects or low nanograms per liter in rivers. Seven of the progestins have been examined for their effects on aquatic vertebrates (fish and frogs). The greatest concern is associated with levonorgestrel, norethisterone, and gestodene and their ability to reduce egg production in fish at levels of 0.8-1.0 ng/L. The lack of environmental measurements, and some of the contradictions in existing values, however, hampers our ability to make a risk assessment. Only a few nanograms per liter of ethynodiol diacetate and desogestrel in water would be needed for fish to receive a human therapeutic dose for these progestins according to modeled bioconcentration factors. But for the other synthetic progestins levels would need to reach tens or hundreds of nanograms per liter to achieve a therapeutic dose. Nevertheless, the wide range of compounds, diverse receptor targets, and the effect on fish reproduction at sub-nanogram-per-liter levels should prompt further research. The ability to impair female reproduction at very low concentrations makes the progestins arguably the most important pharmaceutical group of concern after ethinylestradiol.


General and Comparative Endocrinology | 2011

Influence of temperature on puberty and maturation of pikeperch, Sander lucioperca

Björn Hermelink; Sven Wuertz; Achim Trubiroha; Bernhard Rennert; Werner Kloas; Carsten Schulz

Among external factors, temperature is known to exhibit a prominent role in reproduction of temperate fish species. Here, temperature related induction of puberty in pikeperch Sander lucioperca was investigated. For the first time the key factors of the pikeperch brain-pituitary-gonad axis, targeting the mRNA expression of the luteinising hormone (LH) and the follicle stimulating hormone (FSH), as well as the plasma sex steroids estradiol (E2), testosterone (T), 11-ketotestosteron (11-KT) and 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P) were addressed in the experiment. Concomitant the maturational stages were described histologically. After 3 months, female pikeperch kept at 12°C revealed significant increases in the GSI and plasma E2 concentration and 90% of the females were mid-vitellogenic. After 5 months, females kept between 9 and 15°C exhibited significant up-regulation of E2 and GSI as well as comparable histological outcome. At 6 and 23°C in nearly all females stagnation of oogenesis was recorded. Congruently, T was increased at 12 and 15°C. Expression analysis revealed a significant up-regulation of LHβ and FSHβ mRNA in females from early-vitellogenesis, and from mid-spermatogenesis in males, correlated to elevated plasma concentrations of steroids (except for E2 in males). In conclusion, moderate temperatures (12-15°C for) for at least 3 months were required to proceed with first maturation in juvenile pikeperch. The most efficient effect was observed at 12°C, while high (23°C) or low (6°C) temperatures prevented gonadal maturation. So temperature was identified as a prime factor in the induction of puberty in pikeperch, as revealed by histological as well as endocrine parameters.


General and Comparative Endocrinology | 2010

Naturally-induced endocrine disruption by the parasite Ligula intestinalis (Cestoda) in roach (Rutilus rutilus).

Achim Trubiroha; Hana Kroupova; Sven Wuertz; Sabrina N. Frank; Bernd Sures; Werner Kloas

Fish represent the most frequently used vertebrate class for the investigation of endocrine disruption (ED) in wildlife. However, field studies are complicated by exposure scenarios involving a variety of anthropogenic and natural influences interfering with the endocrine system. One natural aspect rarely considered in ecotoxicological studies is how parasites modulate host physiology. Therefore, investigations were carried out to characterise the impacts of the parasitic tapeworm Ligula intestinalis on plasma sex steroid levels and expression of key genes associated with the reproduction in roach (Rutilus rutilus), a sentinel species for wildlife ED research. Parasitisation by L. intestinalis suppressed gonadal development in both genders of roach and analysis of plasma sex steroids revealed substantially lower levels of 17beta-oestradiol (E2) and 11-ketotestosterone (11-KT) in infected females as well as E2, 11-KT, and testosterone in infected males. Consistently, in both, infected females and males, expression of the oestrogen dependent genes such as vitellogenin and brain-type aromatase in liver and brain was reduced. Furthermore, parasitisation differentially modulated mRNA expression of the oestrogen and androgen receptors in brain and liver. Most prominently, liver expression of oestrogen receptor 1 was reduced in infected females but not in males, whereas expression of oestrogen receptor 2a was up-regulated in both genders. Further, insulin-like growth factor 1 mRNA in the liver was increased in infected females but not in males. Despite severe impacts on plasma sex steroids and pituitary gonadotropin expression, brain mRNA levels of gonadotropin-releasing hormone (GnRH) precursors encoding GnRH2 and GnRH3 were not affected by L. intestinalis-infection. In summary, the present results provide basic knowledge of the endocrine system in L. intestinalis-infected roach and clearly demonstrate that parasites can cause ED in fish.


International Journal for Parasitology | 2009

Expression of gonadotropin subunits in roach (Rutilus rutilus, Cyprinidae) infected with plerocercoids of the tapeworm Ligula intestinalis (Cestoda).

Achim Trubiroha; Sven Wuertz; Sabrina N. Frank; Bernd Sures; Werner Kloas

Plerocercoids of the tapeworm Ligula intestinalis (Cestoda: Bothriocephalidea) have been reported to inhibit gametogenesis of their intermediate fish hosts. However, mechanistic studies are rare and the proximate cues leading to impaired reproduction still remain unknown. In the present study we investigated the effects of infection by L. intestinalis on reproductive parameters of roach (Rutilus rutilus, Cyprinidae), a common fish host of this parasite. Field studies on roach demonstrated that in both genders infection prevented gonad development. As revealed by quantitative PCR, infection was accompanied by essentially lower pituitary expression of follicle-stimulating hormone beta-subunit (FSHbeta) and luteinizing hormone beta-subunit (LHbeta) mRNA compared with uninfected roach, providing clear evidence for gonadotropin-insufficiency as the cause of arrested gametogenesis. Under controlled laboratory conditions infected roach showed lower mRNA levels of FSHbeta but not of LHbeta, despite histology revealing similar gonad stages as in uninfected conspecifics. These findings indicate the involvement of FSH rather than LH in mediating effects of infection early during gonad development in roach. Moreover, the impact of L. intestinalis on reproductive parameters of roach appeared to be independent of the parasite burden. Together, these data provide valuable information on the role of FSH and LH as mediators of parasite-induced sterilization in a vertebrate and implicate the selective inhibition of host reproduction by L. intestinalis as a natural source of endocrine disruption in fish.


Aquatic Toxicology | 2014

The progestin levonorgestrel disrupts gonadotropin expression and sex steroid levels in pubertal roach (Rutilus rutilus).

Hana Kocour Kroupova; Achim Trubiroha; Claudia Lorenz; Valeska Contardo-Jara; Ilka Lutz; Roman Grabic; M. Kocour; Werner Kloas

The aim of the present study was to investigate the effects of the synthetic progestin levonorgestrel (LNG) on the reproductive endocrine system of a teleost fish, the roach (Rutilus rutilus). Pubertal roach were exposed for 28 days in a flow-through system to four concentrations of LNG (3, 31, 312, and 3124 ng/l). Both males and females treated with 3124 ng/l LNG exhibited the upregulated levels of vitellogenin and oestrogen receptor 1 mRNA in the liver. At the same concentration, LNG caused a significant upregulation of the mRNA expression of the gene encoding luteinising hormone β-subunit (lhβ) and the suppression of the mRNA expression of the gene encoding follicle-stimulating hormone β-subunit (fshβ) in the pituitary of both male and female roach. A lower LNG concentration (312 ng/l) suppressed mRNA expression of fshβ in males only. Females treated with 3124 ng/l LNG exhibited significantly lower plasma 11-ketotestosterone (11-KT) and oestradiol (E2) concentrations, whereas their testosterone (T) level was higher compared with the control. Females exposed to 312 ng/l LNG presented significantly lower plasma E2 concentrations. Males exposed to ≥31 ng/l LNG exhibited significantly reduced 11-KT levels. As determined through a histological analysis, the ovaries of females were not affected by LNG exposure, whereas the testes of males exposed to 31 and 312 ng/l LNG exhibited a significantly higher percentage of spermatogonia B compared with the control. The results of the present study demonstrate that LNG disrupts the reproductive system of pubertal roach by affecting the pituitary gonadotropin expression and the sex steroid levels. This disruption was determined to occur in males after exposure to an environmentally relevant concentration (31 ng/l). Moreover, the highest tested concentration of LNG (3124 ng/l) exerted an oestrogenic effect on fish of both sexes.


Toxicological Sciences | 2011

The Synthetic Gestagen Levonorgestrel Disrupts Sexual Development in Xenopus laevis by Affecting Gene Expression of Pituitary Gonadotropins and Gonadal Steroidogenic Enzymes

Claudia Lorenz; Valeska Contardo-Jara; Achim Trubiroha; Angela Krüger; Viola Viehmann; Claudia Wiegand; Stephan Pflugmacher; Gunnar Nützmann; Ilka Lutz; Werner Kloas

In the present study, Xenopus laevis tadpoles were chronically exposed to four concentrations of the synthetic gestagen Levonorgestrel (LNG; 10(-11), 10(-10), 10(-9), and 10(-8)M) starting at Nieuwkoop and Faber (NF) stage 48 until completion of metamorphosis. At NF 58 and 66, brain-pituitary and gonad samples were taken for gene expression analyses of gonadotropins and gonadal steroidogenic enzymes. Exposure to 10(-9) and 10(-8)M LNG until NF 58 repressed messenger RNA (mRNA) expression of luteinizing hormone (LH) β in both genders. This decrease was persistent after further treatment until NF 66 in the 10(-8)M LNG treatment. Expression of follicle-stimulating hormone (FSH) β was affected sex-specifically. No effect was present in NF 58 females, whereas LNG at 10(-9) and 10(-8)M significantly increased FSHβ mRNA levels in males. In NF 66 females, 10(-9)M LNG treatment increased FSHβ gene expression, whereas a decrease was observed in NF 66 males exposed to 10(-8)M LNG. In gonads, expression of steroid-5-alpha-reductase was affected sex-specifically with increased mRNA levels in females but repressed levels in males. Gene expression of further gonadal steroidogenic factors was decreased by 10(-8)M LNG in both genders at NF 66. Assessment of gonad gross morphology and histology revealed poorly developed testes in the 10(-8)M LNG treatment. Our results reveal considerable effects of chronic LNG exposure on sexual development of amphibians. The persistent inhibition of LHβ expression concomitant with decreased mRNA levels of gonadal steroidogenic enzymes is suggested to result in the disruption of reproduction in adult amphibians.


Environmental Pollution | 2013

Influence of the cestode Ligula intestinalis and the acanthocephalan Polymorphus minutus on levels of heat shock proteins (HSP70) and metallothioneins in their fish and crustacean intermediate hosts

Sabrina N. Frank; Saskia Godehardt; Milen Nachev; Achim Trubiroha; Werner Kloas; Bernd Sures

It is a common method to analyse physiological mechanisms of organisms - commonly referred to as biomarkers - to indicate the presence of environmental pollutants. However, as biomarkers respond to a wide range of stressors we want to direct the attention on natural stressors, i.e. on parasites. After two years maintenance under controlled conditions, roach (Rutilus rutilus) revealed no influence on levels of metallothionein by the parasite Ligula intestinalis. The same was found for Gammarus fossarum infected with Polymorphus minutus. However, the heat shock protein (HSP70) response was affected in both host-parasite systems. While the infection of roach resulted in reduced levels of HSP70 compared to uninfected roach, the infection in G.xa0fossarum led to higher levels of HSP70. We also analysed the effect of a 14 days Cd exposure (4xa0μg/L) on the uninfected and infected gammarids. The exposure resulted in induced levels for both, metallothionein and HSP70 whereas the combination of stressors, parasite and exposure, revealed a decrease for levels of HSP70 in comparison to the metal exposure only. Accordingly, parasites as natural parts of aquatic ecosystems have to be considered in ecotoxicological research.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2009

Corticosteroids disrupt amphibian metamorphosis by complex modes of action including increased prolactin expression.

Claudia Lorenz; Robert Opitz; Ilka Lutz; Werner Kloas

Although thyroid hormones (TH) are the primary morphogens regulating amphibian metamorphosis, other hormones including corticosteroids are known to participate in this regulation. The present study investigated effects of corticosteroids on larval development of the amphibian Xenopus laevis. Premetamorphic tadpoles (stage 51) were treated with aldosterone (ALDO; 100 nM), corticosterone (B; 10, 100, 500 nM) and dexamethasone (DEX; 10, 100, 500 nM) for 21 days and organismal responses were assessed by gross morphology determining stage development, whole body length (WBL), and hind limb length (HLL). B and DEX reduced WBL and HLL and caused abnormal development including the lack of fore limb emergence while ALDO treatment showed no significant effect. Gene expression analyses using RT-PCR revealed up-regulation of prolactin (PRL) in brain, but down-regulation of type III deiodinase in tail tissue induced by the glucocorticoids B and DEX. Additionally, stromelysin-3 transcript in tail tissue was decreased by B. ALDO at 100 nM had no effect on mRNA expression, neither in brain nor in tail tissue. These findings indicate that corticosteroids modulate TH-dependent metamorphosis by complex mechanisms that even include indirect effects triggered by increased PRL mRNA expression.

Collaboration


Dive into the Werner Kloas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernd Sures

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabrina N. Frank

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge