Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Werner M. Nau is active.

Publication


Featured researches published by Werner M. Nau.


Chemical Reviews | 2011

Fluorescent Dyes and Their Supramolecular Host/Guest Complexes with Macrocycles in Aqueous Solution

Roy N. Dsouza; Uwe Pischel; Werner M. Nau

Fluorescent Dyes and Their Supramolecular Host/Guest Complexes with Macrocycles in Aqueous Solution Roy N. Dsouza, Uwe Pischel,* and Werner M. Nau* School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany Centro de Investigaci on en Química Sostenible (CIQSO) and Departamento de Ingeniería Química, Química Física y Química Org anica, Universidad de Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain


Nature Methods | 2007

Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes

Andreas Hennig; Hüseyin Bakirci; Werner M. Nau

We introduce a new economic, convenient and general assay principle based on the reversible interaction of water-soluble macrocycles and fluorescent dyes. We show that amino acid decarboxylase activity can be continuously monitored by measuring changes in fluorescence, which result from the competition of the enzymatic product and the dye for forming a complex with a cucurbituril or calixarene macrocycle. The new assay provides a complementary method to the use of antibodies, radioactive markers and labeled substrates.


Advanced Drug Delivery Reviews | 2012

The strategic use of supramolecular pKa shifts to enhance the bioavailability of drugs

Indrajit Ghosh; Werner M. Nau

Macrocyclic hosts of the cyclodextrin, sulfonatocalixarene, and cucurbituril type can be employed as discrete supramolecular drug delivery systems, thereby complementing existing supramolecular drug formulation strategies based on polymers, hydrogels, liposomes, and related microheterogeneous systems. Cucurbiturils, in particular, stand out in that they do not only provide a hydrophobic cavity to encapsulate the drug in the form of a host-guest complex, but in that they possess cation-receptor properties, which favor the encapsulation of protonated drugs over their unprotonated forms, resulting in pronounced pK(a) shifts up to 5 units. These pK(a) shifts can be rationally exploited to activate prodrug molecules, to stabilize the active form of drug molecules, to enhance their solubility, and to increase their degree of ionization, factors which can jointly serve to enhance the bioavailability of drugs, particularly weakly basic ones. Additionally, macrocycles can serve to increase the chemical stability of drugs by protecting them against reactions with nucleophiles (e.g., thiols) and electrophiles, by increasing their photostability, and by causing a higher thermal stability in the solid state. Detailed examples of the different effects of macrocyclic encapsulation of drugs and the associated pK(a) shifts are provided and discussed. Other important considerations, namely a potential lowering of the bioactivity of drugs by macrocyclic complexation, interferences of the macrocycles with biocatalytic processes, the toxicity of the macrocyclic host molecules, and problems and opportunities related to a targeted release and the rate of release of the drug from the host-guest complexes are critically evaluated.


Angewandte Chemie | 2014

The hydrophobic effect revisited--studies with supramolecular complexes imply high-energy water as a noncovalent driving force.

Frank Biedermann; Werner M. Nau; Hans-Jörg Schneider

Traditional descriptions of the hydrophobic effect on the basis of entropic arguments or the calculation of solvent-occupied surfaces must be questioned in view of new results obtained with supramolecular complexes. In these studies, it was possible to separate hydrophobic from dispersive interactions, which are strongest in aqueous systems. Even very hydrophobic alkanes associate significantly only in cavities containing water molecules with an insufficient number of possible hydrogen bonds. The replacement of high-energy water in cavities by guest molecules is the essential enthalpic driving force for complexation, as borne out by data for complexes of cyclodextrins, cyclophanes, and cucurbiturils, for which complexation enthalpies of up to -100 kJ mol(-1) were reached for encapsulated alkyl residues. Water-box simulations were used to characterize the different contributions from high-energy water and enabled the calculation of the association free enthalpies for selected cucurbituril complexes to within a 10% deviation from experimental values. Cavities in artificial receptors are more apt to show the enthalpic effect of high-energy water than those in proteins or nucleic acids, because they bear fewer or no functional groups in the inner cavity to stabilize interior water molecules.


Supramolecular Chemistry | 2007

Cucurbituril Encapsulation of Fluorescent Dyes

Apurba L. Koner; Werner M. Nau

The potential of cucurbiturils, water-soluble macrocyclic host molecules composed of glycoluril units, for tuning the properties of fluorescent dyes and advancing new applications is illustrated. Cucurbit[7]uril (CB7), which presents a particularly attractive derivative due to its intermediary size and high water solubility, has been shown to display a variety of advantageous effects on fluorescent dyes, which include increased fluorescence intensity and brightness, enhanced photostability, protection towards fluorescence quenchers, solubilization, and deaggregation. Particularly noteworthy is the prolongation of the fluorescence lifetimes of different dyes, which can be traced back to the low polarizability of the host cavity. In addition, the host serves as cation receptor, which causes a considerable shift of protonation equilibria and assists the protonation of fluorescent dyes. The latter effect can be exploited in the design of protolytic fluorophore displacement assays. The perspective of cucurbiturils as stabilizers for laser dyes, enhancement agents in time-resolved fluorescence (TRF) assays, contrast agents for fluorescence lifetime imaging (FLIM), and dyes for fluorescent collectors for solar cells is mentioned. Original experimental results for the effect of CB7 on the fluorescence properties of three dyes (Macrolex Yellow 10 GN, Dapoxyl, and 4-(dimethylamino)benzonitrile) are presented.


Accounts of Chemical Research | 2014

Dynamically Analyte-Responsive Macrocyclic Host–Fluorophore Systems

Garima Ghale; Werner M. Nau

CONSPECTUS: Host-guest chemistry commenced to a large degree with the work of Pedersen, who in 1967 first reported the synthesis of crown ethers. The past 45 years have witnessed a substantial progress in the field, from the design of highly selective host molecules as receptors to their application in drug delivery and, particularly, analyte sensing. Much effort has been expended on designing receptors and signaling mechanism for detecting compounds of biological and environmental relevance. Traditionally, the design of a chemosensor comprises one component for molecular recognition, frequently macrocycles of the cyclodextrin, cucurbituril, cyclophane, or calixarene type. The second component, used for signaling, is typically an indicator dye which changes its photophysical properties, preferably its fluorescence, upon analyte binding. A variety of signal transduction mechanisms are available, of which displacement of the dye from the macrocyclic binding site is one of the simplest and most popular ones. This constitutes the working principle of indicator displacement assays. However, indicator displacement assays have been predominantly exploited in a static fashion, namely, to determine absolute analyte concentrations, or, by using combinations of several reporter pairs, to achieve a differential sensing and, thus, identification of specific food products or brands. In contrast, their use in biological systems, for example, with membranes, cells, or with enzymes has been comparably less explored, which led us to the design of the so-called tandem assays, that is, dynamically analyte-responsive host-dye systems, in which the change in analyte concentrations is induced by a biological reaction or process. This methodological variation has practical application potential, because the ability to monitor these biochemical pathways or to follow specific molecules in real time is of paramount interest for both biochemical laboratories and the pharmaceutical industry. We will begin by describing the underlying principles that govern the use of macrocycle-fluorescent dye complexes to monitor time-dependent changes in analyte concentrations. Suitable chemosensing ensembles are introduced, along with their fluorescence responses (switch-on or switch-off). This includes supramolecular tandem assays in their product- and substrate-selective variants, and in their domino and enzyme-coupled modifications, with assays for amino acid decarboxylases, diamine, and choline oxidase, proteases, methyl transferases, acetylcholineesterase (including an unpublished direct tandem assay), choline oxidase, and potato apyrase as examples. It also includes the very recently introduced tandem membrane assays in their published influx and unpublished efflux variants, with the outer membrane protein F as channel protein and protamine as bidirectionally translocated analyte. As proof-of-principle for environmental monitoring applications, we describe sensing ensembles for volatile hydrocarbons.


International Journal of Photoenergy | 2005

Taming fluorescent dyes with cucurbituril

Werner M. Nau; Jyotirmayee Mohanty

The potential of the supramolecular host molecule cucurbit(7)uril to serve as a stabilizing ad- ditive and enhancement agent was investigated for the following dyes in aqueous solution: rhodamine 6G, rhodamine 123, tetramethylrhodamine, cresyl violet, fluorescein, coumarin 102, pyronin B, pyronin Y, two cyanine 5 and one cyanine 3 derivative, and IR140 as well as IR144. For most cationic dyes photostabi- lization was established, and a pronounced thermal stabilization due to deaggregation and solubilization was observed for the xanthene dyes. The advantageous effects are attributed to the formation of inclusion complexes with different photophysical and photochemical properties. The complexation is accompanied by spectral shifts characteristic for the inclusion in a less polar environment, while the fluorescence quantum yields as well as the brightness show an increase, with few exceptions. As a consequence of the low polar- izability inside the cucurbituril cavity, the fluorescence lifetimes of the included dyes increase substantially and systematically. Applications of the new photostabilizing additive for dye lasers, for prolonged storage of dye solutions, in scanning confocal microscopy, and fluorescence correlation spectroscopy are discussed.


Journal of the American Chemical Society | 2011

Determining protease substrate selectivity and inhibition by label-free supramolecular tandem enzyme assays.

Garima Ghale; Vijayakumar Ramalingam; Adam R. Urbach; Werner M. Nau

An analytical method has been developed for the continuous monitoring of protease activity on unlabeled peptides in real time by fluorescence spectroscopy. The assay is enabled by a reporter pair comprising the macrocycle cucurbit[7]uril (CB7) and the fluorescent dye acridine orange (AO). CB7 functions by selectively recognizing N-terminal phenylalanine residues as they are produced during the enzymatic cleavage of enkephalin-type peptides by the metalloendopeptidase thermolysin. The substrate peptides (e.g., Thr-Gly-Ala-Phe-Met-NH(2)) bind to CB7 with moderately high affinity (K ≈ 10(4) M(-1)), while their cleavage products (e.g., Phe-Met-NH(2)) bind very tightly (K > 10(6) M(-1)). AO signals the reaction upon its selective displacement from the macrocycle by the high affinity product of proteolysis. The resulting supramolecular tandem enzyme assay effectively measures the kinetics of thermolysin, including the accurate determination of sequence specificity (Ser and Gly instead of Ala), stereospecificity (d-Ala instead of l-Ala), endo- versus exopeptidase activity (indicated by differences in absolute fluorescence response), and sensitivity to terminal charges (-CONH(2) vs -COOH). The capability of the tandem assay to measure protease inhibition constants was demonstrated on phosphoramidon as a known inhibitor to afford an inhibition constant of (17.8 ± 0.4) nM. This robust and label-free approach to the study of protease activity and inhibition should be transferable to other endo- and exopeptidases that afford products with N-terminal aromatic amino acids.


Angewandte Chemie | 2001

Two Mechanisms of Slow Host–Guest Complexation between Cucurbit[6]uril and Cyclohexylmethylamine: pH-Responsive Supramolecular Kinetics

Cesar Marquez; Werner M. Nau

20 times more rapid is the complexation of the organic ammonium ion receptor cucurbit[6]uril (CB6) with cyclohexylmethylamine than with the cyclohexylmethylammonium species. Within the narrow pH region around the pKa value of the amine, the complexation kinetics are accelerated but the binding constant remains essentially unaffected. In this region, the ammonium complex is formed through binding of the amine form followed by fast protonation and not through direct complexation of the ammonium form. Molecular dynamics calculations suggest that the amine form undergoes a direct inclusion into CB6 while the ingression of the ammonium form is retarded by the formation of an association complex, which reacts through a different, higher lying transition state to the inclusion complex.


Chemistry: A European Journal | 2008

Supramolecular tandem enzyme assays for multiparameter sensor arrays and enantiomeric excess determination of amino acids.

David M. Bailey; Andreas Hennig; Vanya D. Uzunova; Werner M. Nau

The coupling of an enzymatic transformation with dynamic host-guest exchange allows the unselective binding of macrocycles to be used for highly selective analyte sensing. The resulting supramolecular tandem enzyme assays require the enzymatic substrate and its corresponding product to differ significantly in their affinity for macrocycles, for example, cation receptors, and to show a differential propensity to displace a fluorescent dye from its host-guest complex. The enzymatic transformation results in a concomitant dye displacement that can be accurately followed by optical spectroscopy, specifically fluorescence. By exploiting this label-free continuous enzyme assay principle with the fluorescent dye Dapoxyl and the macrocyclic host cucurbit[7]uril, a multiparameter sensor array has been designed, which is capable of detecting the presence of amino acids (e.g. histidine, arginine, lysine, and tyrosine) and their decarboxylases. Only in the presence of both, the particular amino acid and the corresponding decarboxylase, is the amine or diamine product formed. These products are more highly positively charged than the substrate, have a higher affinity for the macrocycle and, therefore, displace the dye from the complex. The extension of the high selectivity and muM sensitivity of the tandem assay principle has also allowed for the accurate measurement of D-lysine enantiomeric excesses of up to 99.98 %, as only the L-enantiomer is accepted by the enzyme as a substrate and is converted to the product that is responsible for the observed fluorescence signal.

Collaboration


Dive into the Werner M. Nau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Hennig

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Indrajit Ghosh

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar

Jyotirmayee Mohanty

Bhabha Atomic Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jarugu Narasimha Moorthy

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge