Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Werner Stenzel is active.

Publication


Featured researches published by Werner Stenzel.


Journal of Cerebral Blood Flow and Metabolism | 2013

Early Loss of Pericytes and Perivascular Stromal Cell-Induced Scar Formation after Stroke

Francisco Fernández-Klett; Jason R. Potas; Diana Hilpert; Katja Blazej; Josefine Radke; Jojanneke Huck; Odilo Engel; Werner Stenzel; Guillem Genové; Josef Priller

Despite its limited regenerative capacity, the central nervous system (CNS) shares more repair mechanisms with peripheral tissues than previously recognized. Scar formation is a ubiquitous healing mechanism aimed at patching tissue defects via the generation of fibrous extracellular matrix (ECM). This process, orchestrated by stromal cells, can unfavorably affect the capacity of tissues to restore function. Vascular mural cells have been found to contribute to scarring after spinal cord injury. In the case of stroke, little is known about the responses of pericytes (PCs) and stromal cells. Here, we show that capillary PCs are rapidly lost after cerebral ischemia in both experimental and human stroke. Coincident with this loss is a massive proliferation of resident platelet-derived growth factor receptor beta (PDGFRβ)+ and CD105+ stromal cells, which originate from the neurovascular unit and deposit ECM in the ischemic mouse brain. The presence of PDGFRβ+ stromal cells demarcates a fibrotic, contracted, and macrophage-laden lesion core from the rim of hypertrophic astroglia in both experimental and human stroke. We suggest that a previously unrecognized population of CNS-resident stromal cells drives a dynamic process of scarring after cerebral ischemia, which appears distinct from the glial scar and represents a novel target for regenerative stroke therapies.


American Journal of Pathology | 2009

IL-4/IL-13-Dependent Alternative Activation of Macrophages but Not Microglial Cells Is Associated with Uncontrolled Cerebral Cryptococcosis

Werner Stenzel; Uwe Müller; Gabriele Köhler; Frank L. Heppner; Manfred Blessing; Andrew N. J. McKenzie; Frank Brombacher; Gottfried Alber

Both interleukin (IL)-4- and IL-13-dependent Th2-mediated immune mechanisms exacerbate murine Cryptococcus neoformans-induced bronchopulmonary disease. To study the roles of IL-4 and IL-13 in cerebral cryptococcosis, IL-4 receptor alpha-deficient (IL-4Ralpha(-/-)), IL-4-deficient (IL-4(-/-)), IL-13-deficient (IL-13(-/-)), IL-13 transgenic (IL-13(T/+)), and wild-type mice were infected intranasally. IL-13(T/+) mice displayed a higher fungal brain burden than wild-type mice, whereas the brain burdens of IL-4Ralpha(-/-), IL-4(-/-), and IL-13(-/-) mice were significantly lower as compared with wild-type mice. On infection, 68% of wild-type mice and 88% of IL-13-overexpressing IL-13(T/+) mice developed significant cerebral lesions. In contrast, only a few IL-4Ralpha(-/-), IL-4(-/-), and IL-13(-/-) mice had small lesions in their brains. Furthermore, IL-13(T/+) mice harbored large pseudocystic lesions in the central nervous system parenchyma, bordered by voluminous foamy alternatively activated macrophages (aaMphs) that contained intracellular cryptococci, without significant microglial activation. In wild-type mice, aaMphs tightly bordered pseudocystic lesions as well, and these mice, in addition, showed microglial cell activation. Interestingly, in resistant IL-4(-/-), IL-13(-/-), and IL-4Ralpha(-/-) mice, no aaMphs were discernible. Microglial cells of all mouse genotypes neither internalized cryptococci nor expressed markers of alternative activation, although they displayed similar IL-4Ralpha expression levels as macrophages. These data provide the first evidence of the development of aaMphs in a central nervous system infectious disease model, pointing to distinct roles of macrophages versus microglial cells in the central nervous system immune response against C. neoformans.


American Journal of Pathology | 2011

M2 Polarized Macrophages and Giant Cells Contribute to Myofibrosis in Neuromuscular Sarcoidosis

Stefan Prokop; Frank L. Heppner; Hans H. Goebel; Werner Stenzel

The etiopathogenesis of sarcoidosis, a systemic granulomatous disease, still remains obscure. A multitude of organs have been described to be affected in systemic sarcoidosis. Skeletal muscles may also be affected, leading to myalgia and weakness. A workup of the specific immune response with emphasis on the macrophage response is provided herein. Affected muscle tissue from seven patients with systemic sarcoidosis was analyzed and compared with that from seven patients with other myopathies containing macrophagocytic infiltration. Monocytes/macrophages and giant cells in granulomas of muscle tissue from patients with sarcoidosis show a status of alternative activation (M2) based on their expression of CD206, CD301, arginase-1, and suppressor of cytokine signaling-1 as a consequence of a functionally type 2 helper T cell (Th2)-biased cytokine profile. Significant fibrosis and up-regulation of CCL18 were associated with the M2 phenotype of macrophages. Conversely, up-regulated Th1 cytokines did not result in significant classical activation of macrophages (M1), with poor inducible nitric oxide synthase and cyclooxygenase-2 production. Giant cell formation was further associated with up-regulated expression of DNAX-activating protein of 12 kDa (DAP12; gene symbol TYROBP). Functionally, alternative activation of macrophages on the basis of a Th2-biased immune response may induce clinical symptoms and chronic evolution of neuromuscular sarcoidosis. This is the first characterization of Th2-mediated immune mechanisms in neuromuscular sarcoidosis suggesting that a specific macrophage activation status leading to myofibrosis may be a key event in the pathogenesis of this disease.


Neuropathology and Applied Neurobiology | 2012

Review: Immune-mediated necrotizing myopathies – a heterogeneous group of diseases with specific myopathological features

Werner Stenzel; Hans-Hilmar Goebel; E. Aronica

Immune‐mediated necrotizing myopathies (IMNMs) are now well recognized among the so‐called idiopathic inflammatory myopathies (IIMs), which also comprise dermatomyositis (DM), polymyositis (PM), sporadic inclusion body myositis (sIBM) and non‐specific myositis. All of these conditions are defined on the basis of distinct clinical symptoms, in combination with results derived from muscle biopsy and additional data, such as measurement of the serum creatine kinase (CK) level as well as myositis‐associated and myositis‐specific autoantibodies, electromyography (EMG) and modern imaging techniques. Importantly, diagnosis of one of the above mentioned myositis forms implies a specific clinical syndrome or a distinct disease. However, there is considerable clinical heterogeneity, and overlap requiring further diagnostic precision. Classification and subclassification of IIMs are highly debated and the subjects of intense research, especially as clinical trials with anti‐inflammatory agents should follow universally defined and accepted criteria. This review focuses on the description of the spectrum of immune‐mediated necrotizing myopathies with an emphasis on their myopathological features.


American Journal of Pathology | 2012

Immune-Mediated Necrotizing Myopathy Is Characterized by a Specific Th1-M1 Polarized Immune Profile

Corinna Preuße; Hans H. Goebel; Josephin Held; Oliver Wengert; Franziska Scheibe; Kerstin Irlbacher; Arend Koch; Frank L. Heppner; Werner Stenzel

Immune-mediated necrotizing myopathy (IMNM) is considered one of the idiopathic inflammatory myopathies, comprising dermatomyositis, polymyositis, and inclusion body myositis. The heterogeneous group of necrotizing myopathies shows a varying amount of necrotic muscle fibers, myophagocytosis, and a sparse inflammatory infiltrate. The underlying immune response in necrotizing myopathy has not yet been addressed in detail. Affected muscle tissue, obtained from 16 patients with IMNM, was analyzed compared with eight non-IMNM (nIMNM) tissues. Inflammatory cells were characterized by IHC, and immune mediators were assessed by quantitative real-time PCR. We demonstrate that immune- and non-immune-mediated disease can be distinguished by a specific immune profile with significantly more prominent major histocompatibility complex class I expression and complement deposition and a conspicuous inflammatory infiltrate. In addition, patients with IMNM exhibit a strong type 1 helper T cell (T1)/classically activated macrophage M1 response, with detection of elevated interferon-γ, tumor necrosis factor-α, IL-12, and STAT1 levels in the muscle tissue, which may serve as biomarkers and aid in diagnostic decisions. Furthermore, B cells and high expression of the chemoattractant CXCL13 were identified in a subgroup of patients with defined autoantibodies. Taken together, we propose a diagnostic armamentarium that allows for clear differentiation between IMNM and nIMNM. In addition, we have characterized a Th1-driven, M1-mediated immune response in most of the autoimmune necrotizing myopathies, which may guide therapeutic options in the future.


Brain | 2015

Phosphorylated α-synuclein in skin nerve fibres differentiates Parkinson’s disease from multiple system atrophy

Leonora Zange; Cornelia Noack; Katrin Hahn; Werner Stenzel; Axel Lipp

Deposition of phosphorylated SNCA (also known as α-synuclein) in cutaneous nerve fibres has been shown pre- and post-mortem in Parkinsons disease. Thus far, no pre-mortem studies investigating the presence of phosphorylated SNCA in skin sympathetic nerve fibres of multiple system atrophy, another synucleinopathy, have been conducted. In this in vivo study, skin from the ventral forearm of 10 patients with multiple system atrophy and 10 with Parkinsons disease, together with six control subjects with essential tremor, were examined by immunohistochemistry. Phosphorylated SNCA deposits in skin sympathetic nerve fibres and dermal nerve fibre density were assessed. All patients with Parkinsons disease expressed phosphorylated SNCA in sympathetic skin nerve fibres, correlating with an age-independent denervation of autonomic skin elements. In contrast, no phosphorylated SNCA was found in autonomic skin nerve fibres of patients with multiple system atrophy and essential tremor control subjects. These findings support that phosphorylated SNCA deposition is causative for nerve fibre degeneration in Parkinsons disease. Moreover, pre-mortem investigation of phosphorylated SNCA in cutaneous nerve fibres may prove a relevant and easily conductible diagnostic procedure to differentiate Parkinsons disease from multiple system atrophy.


American Journal of Pathology | 2011

Eosinophils Contribute to IL-4 Production and Shape the T-Helper Cytokine Profile and Inflammatory Response in Pulmonary Cryptococcosis

Daniel Piehler; Werner Stenzel; Andreas Grahnert; Josephin Held; Lydia Richter; Gabriele Köhler; Tina Richter; Maria Eschke; Gottfried Alber; Uwe Müller

Susceptibility to infection with Cryptococcus neoformans is tightly determined by production of IL-4. In this study, we investigated the time course of IL-4 production and its innate cellular source in mice infected intranasally with C. neoformans. We show that pulmonary IL-4 production starts surprisingly late after 6 weeks of infection. Interestingly, in the lungs of infected mice, pulmonary T helper (Th) cells and eosinophils produce significant amounts of IL-4. In eosinophil-deficient ΔdblGATA mice, IL-33 receptor-expressing Th2s are significantly reduced, albeit not absent, whereas protective Th1 and Th17 responses are enhanced. In addition, recruitment of pulmonary inflammatory cells during infection with C. neoformans is reduced in the absence of eosinophils. These data expand previous findings emphasizing an exclusively destructive effector function by eosinophilic granulocytes. Moreover, in ΔdblGATA mice, fungal control is slightly enhanced in the lung; however, dissemination of Cryptococcus is not prevented. Therefore, eosinophils play an immunoregulatory role that contributes to Th2-dependent susceptibility in allergic inflammation during bronchopulmonary mycosis.


Brain | 2012

Pathophysiology of protein aggregation and extended phenotyping in filaminopathy

Rudolf A. Kley; Piraye Serdaroglu-Oflazer; Yvonne Leber; Zagaa Odgerel; Peter F.M. van der Ven; Montse Olivé; Isidro Ferrer; Adekunle Onipe; Mariya Mihaylov; Juan M. Bilbao; Hee S. Lee; Jörg Höhfeld; Kristina Djinović-Carugo; Kester Kong; Martin Tegenthoff; Sören Peters; Werner Stenzel; Matthias Vorgerd; Lev G. Goldfarb; Dieter O. Fürst

Mutations in FLNC cause two distinct types of myopathy. Disease associated with mutations in filamin C rod domain leading to expression of a toxic protein presents with progressive proximal muscle weakness and shows focal destructive lesions of polymorphous aggregates containing desmin, myotilin and other proteins in the affected myofibres; these features correspond to the profile of myofibrillar myopathy. The second variant associated with mutations in the actin-binding domain of filamin C is characterized by weakness of distal muscles and morphologically by non-specific myopathic features. A frameshift mutation in the filamin C rod domain causing haploinsufficiency was also found responsible for distal myopathy with some myofibrillar changes but no protein aggregation typical of myofibrillar myopathies. Controversial data accumulating in the literature require re-evaluation and comparative analysis of phenotypes associated with the position of the FLNC mutation and investigation of the underlying disease mechanisms. This is relevant and necessary for the refinement of diagnostic criteria and developing therapeutic approaches. We identified a p.W2710X mutation in families originating from ethnically diverse populations and re-evaluated a family with a p.V930_T933del mutation. Analysis of the expanded database allows us to refine clinical and myopathological characteristics of myofibrillar myopathy caused by mutations in the rod domain of filamin C. Biophysical and biochemical studies indicate that certain pathogenic mutations in FLNC cause protein misfolding, which triggers aggregation of the mutant filamin C protein and subsequently involves several other proteins. Immunofluorescence analyses using markers for the ubiquitin-proteasome system and autophagy reveal that the affected muscle fibres react to protein aggregate formation with a highly increased expression of chaperones and proteins involved in proteasomal protein degradation and autophagy. However, there is a noticeably diminished efficiency of both the ubiquitin-proteasome system and autophagy that impairs the muscle capacity to prevent the formation or mediate the degradation of aggregates. Transfection studies of cultured muscle cells imitate events observed in the patients affected muscle and therefore provide a helpful model for testing future therapeutic strategies.


Brain | 2015

Anti-Jo-1 antibody-positive patients show a characteristic necrotizing perifascicular myositis

Lénaig Mescam-Mancini; Y. Allenbach; Baptiste Hervier; Hervé Devilliers; Kuberaka Mariampillay; Odile Dubourg; Thierry Maisonobe; Romain K. Gherardi; Paulette Mezin; C. Preusse; Werner Stenzel; Olivier Benveniste

Idiopathic inflammatory myopathies can be classified as polymyositis, dermatomyositis, immune-mediated necrotizing myopathy, sporadic inclusion body myositis or non-specific myositis. Anti-Jo-1 antibody-positive patients are assigned to either polymyositis or dermatomyositis suggesting overlapping pathological features. We aimed to determine if anti-Jo-1 antibody-positive myopathy has a specific morphological phenotype. In a series of 53 muscle biopsies of anti-Jo-1 antibody-positive patients, relevant descriptive criteria defining a characteristic morphological pattern were identified. They were tested in a second series of anti-Jo-1 antibody-positive patients and compared to 63 biopsies from patients suffering from other idiopathic inflammatory myopathies. In anti-Jo-1 antibody-positive patients, necrotic fibres, which strongly clustered in perifascicular regions, were frequently observed. Sarcolemmal complement deposition was detected specifically in perifascicular areas. Inflammation was mainly located in the perimysium and around vessels in 90.6%. Perimysial fragmentation was observed in 90% of cases. Major histocompatibility complex class I staining was diffusely positive, with a perifascicular reinforcement. Multivariate analysis showed that criteria defining perifascicular pathology: perifascicular necrosis, atrophy, and perimysial fragmentation allow the distinction of anti-Jo-1 antibody-positive patients, among patients suffering from other idiopathic inflammatory myopathies. Anti-Jo-1 antibody-positive patients displayed perifascicular necrosis, whereas dermatomyositis patients exhibited perifascicular atrophy.


Glia | 2017

P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases

Alexander Mildner; Hao Huang; Josefine Radke; Werner Stenzel; Josef Priller

Microglia are resident immune cells in the central nervous system (CNS), which are essential for immune defence and critically contribute to neuronal functions during homeostasis. Until now, little is known about microglia biology in humans in part due to the lack of microglia‐specific markers. We therefore investigated the expression of the purinergic receptor P2Y12 in human brain tissue. Compared to classical markers used to identify microglia such as Iba1, CD68 or MHCII, we found that P2Y12 is expressed on parenchymal microglia but is absent from perivascular or meningeal macrophages. We further demonstrate that P2Y12 expression is stable throughout human brain development, including fetal phases, and quantification of P2 Y12+ microglia revealed that the density of human microglia is constant throughout lifetime. In contrast, CD68 expression increases during aging in cerebellar but not in cortical microglia, indicating regional heterogeneity. CNS pathologies such as Alzheimers disease or multiple sclerosis—but not schizophrenia—result in decreased P2Y12 immunoreactivity in plaque‐ or lesion‐associated myeloid cells, whereas Iba1 expression remains detectable. Our results suggest that P2Y12 is a useful marker for the identification of human microglia throughout the lifespan. Moreover, P2Y12 expression might help to discriminate activated microglia and infiltrating myeloid cells from quiescent microglia in the human CNS. GLIA 2017;65:375–387

Collaboration


Dive into the Werner Stenzel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge