Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Werner Tjarks is active.

Publication


Featured researches published by Werner Tjarks.


Neurosurgery | 1999

Boron neutron capture therapy of brain tumors: an emerging therapeutic modality.

Rolf F. Barth; Albert H. Soloway; Joseph H. Goodman; Reinhard A. Gahbauer; Nilendu Gupta; Thomas E. Blue; Weilian Yang; Werner Tjarks

Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when boron-10, a stable isotope, is irradiated with low-energy thermal neutrons to yield alpha particles and recoiling lithium-7 nuclei. For BNCT to be successful, a large number of 10B atoms must be localized on or preferably within neoplastic cells, and a sufficient number of thermal neutrons must be absorbed by the 10B atoms to sustain a lethal 10B (n, alpha) lithium-7 reaction. There is a growing interest in using BNCT in combination with surgery to treat patients with high-grade gliomas and possibly metastatic brain tumors. The present review covers the biological and radiobiological considerations on which BNCT is based, boron-containing low- and high-molecular weight delivery agents, neutron sources, clinical studies, and future areas of research. Two boron compounds currently are being used clinically, sodium borocaptate and boronophenylalanine, and a number of new delivery agents are under investigation, including boronated porphyrins, nucleosides, amino acids, polyamines, monoclonal and bispecific antibodies, liposomes, and epidermal growth factor. These are discussed, as is optimization of their delivery. Nuclear reactors currently are the only source of neutrons for BNCT, and the fission reaction within the core produces a mixture of lower energy thermal and epithermal neutrons, fast or high-energy neutrons, and gamma-rays. Although thermal neutron beams have been used clinically in Japan to treat patients with brain tumors and cutaneous melanomas, epithermal neutron beams now are being used in the United States and Europe because of their superior tissue-penetrating properties. Currently, there are clinical trials in progress in the United States, Europe, and Japan using a combination of debulking surgery and then BNCT to treat patients with glioblastomas. The American and European studies are Phase I trials using boronophenylalanine and sodium borocaptate, respectively, as capture agents, and the Japanese trial is a Phase II study. Boron compound and neutron dose escalation studies are planned, and these could lead to Phase II and possibly to randomized Phase III clinical trials that should provide data regarding therapeutic efficacy.


Molecular Cancer Therapeutics | 2005

Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature

Marina V. Backer; Timur I. Gaynutdinov; Vimal Patel; Achintya K. Bandyopadhyaya; B. T. S. Thirumamagal; Werner Tjarks; Rolf F. Barth; Kevin P. Claffey; Joseph M. Backer

Tumor neovasculature is a potential but, until very recently, unexplored target for boron neutron capture therapy (BNCT) of cancer. In the present report, we describe the construction of a vascular endothelial growth factor (VEGF)–containing bioconjugate that potentially could be used to target up-regulated VEGF receptors (VEGFR), which are overexpressed on tumor neovasculature. A fifth-generation polyamidoamine dendrimer containing 128 reactive amino groups was reacted with 105 to 110 decaborate molecules to produce a macromolecule with 1,050 to 1,100 boron atoms per dendrimer. This was conjugated to thiol groups of VEGF at a 4:1 molar ratio using the heterobifunctional reagent sulfo-LC-SPDP. In addition, the boronated dendrimer was tagged with a near-IR Cy5 dye to allow for near-IR fluorescent imaging of the bioconjugate in vitro and in vivo. As would be predicted, the resulting VEGF-BD/Cy5 bioconjugate was not cytotoxic to HEK293 cells engineered to express 2.5 × 106 VEGFR-2 per cell. Furthermore, it showed binding and activation of VEGFR-2 comparable with that of native VEGF. Internalization of VEGF-BD/Cy5 by PAE cells expressing 2.5 × 105 VEGFR-2 per cell was inhibited by excess VEGF, indicating a VEGFR-2-mediated mechanism of uptake. Near-IR fluorescent imaging of 4T1 mouse breast carcinoma revealed selective accumulation of VEGF-BD/Cy5, but not BD/Cy5, particularly at the tumor periphery where angiogenesis was most active. Accumulation of VEGF-BD/Cy5 in 4T1 breast carcinoma was diminished in mice pretreated with a toxin-VEGF fusion protein that selectively killed VEGFR-2-overexpressing endothelial cells. Our data lay the groundwork for future studies using the VEGF-BD/Cy5 bioconjugate as a targeting agent for BNCT of tumor neovasculature.


Biochimica et Biophysica Acta | 2002

A novel pH-sensitive liposome formulation containing oleyl alcohol.

Jennifer Sudimack; Wenjin Guo; Werner Tjarks; Robert J. Lee

pH-sensitive liposomes are designed to undergo acid-triggered destabilization. First generation pH-sensitive liposomes, based on the cone-shaped lipid dioleoylphosphatidylethanolamine (DOPE), have been shown to lose fusogenicity in the presence of serum. Here, we report the design and evaluation of novel serum-resistant pH-sensitive liposome formulations that are based on the composition of egg phosphatidylcholine (PC), cholesteryl hemisuccinate (CHEMS), oleyl alcohol (OAlc), and Tween-80 (T-80). When loaded with the fluorescent probe calcein, these liposomes exhibited excellent stability at pH 7.4 and underwent rapid destabilization upon acidification as shown by calcein dequenching and particle size increase. Adjusting the mole percentages of T-80 and OAlc in the formulation could regulate the stability and pH-sensitive properties of these liposomes. Liposomes with a higher T-80 content exhibited greater stability but were less sensitive to acid-induced destabilization. Meanwhile, formulations with a higher OAlc content exhibited greater content release in response to low pH. The pH-triggered liposomal destabilization did not produce membrane fusion according to an octadecylrhodamine B chloride (R(18)) lipid-mixing assay. Compared to DOPE-based pH-sensitive liposomes, the above formulations showed much better retention of their pH-sensitive properties in the presence of 10% serum. These liposomes were then evaluated for intracellular delivery of entrapped cytosine-beta-D-arabinofuranoside (araC) in KB human oral cancer cells, which have elevated folate receptor (FR) expression. The FR, which is amplified in many types of human tumors, has been shown to mediate the internalization of folate-derivatized liposomes into an acidic intracellular compartment. FR-targeted OAlc-based pH-sensitive liposomes, entrapping 200 mM araC, showed approximately 17-times greater FR-dependent cytotoxicity in KB cells compared to araC delivered via FR-targeted non-pH-sensitive liposomes. These data indicated that pH-sensitive liposomes based on OAlc, combined with FR-mediated targeting, are promising delivery vehicles for membrane impermeable therapeutic agents.


Clinical Cancer Research | 2007

Molecular Targeting and Treatment of an Epidermal Growth Factor Receptor–Positive Glioma Using Boronated Cetuximab

Gong Wu; Weilian Yang; Rolf F. Barth; Shinji Kawabata; Michele Swindall; Achintya K. Bandyopadhyaya; Werner Tjarks; Behrooz Khorsandi; Thomas E. Blue; Amy K. Ferketich; Ming Yang; Gregory A. Christoforidis; Thomas J. Sferra; Peter J. Binns; Kent J. Riley; Michael J. Ciesielski; Robert A. Fenstermaker

Purpose: The purpose of the present study was to evaluate the anti–epidermal growth factor monoclonal antibody (mAb) cetuximab (IMC-C225) as a delivery agent for boron neutron capture therapy (BNCT) of a human epidermal growth factor receptor (EGFR) gene-transfected rat glioma, designated as F98EGFR. Experimental Design: A heavily boronated polyamidoamine dendrimer was chemically linked to cetuximab by means of the heterobifunctional reagents N-succinimidyl 3-(2-pyridyldithio)-propionate and N-(k-maleimido undecanoic acid)-hydrazide. The bioconjugate, designated as BD-C225, was specifically taken up by F98EGFR glioma cells in vitro compared with receptor-negative F98 wild-type cells (41.8 versus 9.1 μg/g). For in vivo biodistribution studies, F98EGFR cells were implanted stereotactically into the brains of Fischer rats, and 14 days later, BD-C225 was given intracerebrally by either convection enhanced delivery (CED) or direct intratumoral (i.t.) injection. Results: The amount of boron retained by F98EGFR gliomas 24 h following CED or i.t. injection was 77.2 and 50.8 μg/g, respectively, with normal brain and blood boron values <0.05 μg/g. Boron neutron capture therapy was carried out at the Massachusetts Institute of Technology Research Reactor 24 h after CED of BD-C225, either alone or in combination with i.v. boronophenylalanine (BPA). The corresponding mean survival times (MST) were 54.5 and 70.9 days (P = 0.017), respectively, with one long-term survivor (more than 180 days). In contrast, the MSTs of irradiated and untreated controls, respectively, were 30.3 and 26.3 days. In a second study, the combination of BD-C225 and BPA plus sodium borocaptate, given by either i.v. or intracarotid injection, was evaluated and the MSTs were equivalent to that obtained with BD-C225 plus i.v. BPA. Conclusions: The survival data obtained with BD-C225 are comparable with those recently reported by us using boronated mAb L8A4 as the delivery agent. This mAb recognizes the mutant receptor, EGFRvIII. Taken together, these data convincingly show the therapeutic efficacy of molecular targeting of EGFR using a boronated mAb either alone or in combination with BPA and provide a platform for the future development of combinations of high and low molecular weight delivery agents for BNCT of brain tumors.


Anti-cancer Agents in Medicinal Chemistry | 2006

Boron Containing Macromolecules and Nanovehicles as Delivery Agents for Neutron Capture Therapy

Gong Wu; Rolf F. Barth; Weilian Yang; Robert J. Lee; Werner Tjarks; Marina V. Backer; Joseph M. Backer

Boron neutron capture therapy (BNCT) is based on the nuclear capture and fission reactions that occur when non-radioactive boron-10 is irradiated with low energy thermal neutrons to yield high linear energy transfer (LET) alpha particles ((4)He) and recoiling lithium -7((7)Li) nuclei. For BNCT to be successful, a sufficient number of (10)B atoms ( approximately 10(9) atoms/cell) must be selectively delivered to the tumor and enough thermal neutrons must be absorbed by them to sustain a lethal (10)B(n, alpha) (7)Li capture reaction. BNCT primarily has been used to treat patients with brain tumors, and more recently those with head and neck cancer. Two low molecular weight (LMW) boron delivery agents currently are being used clinically, sodium borocaptate and boronophenylalanine. However, a variety of high molecular weight (HMW) agents consisting of macromolecules and nanovehicles have been developed. This review will focus on the latter which include: monoclonal antibodies, dendrimers, liposomes, dextrans, polylysine, avidin, folic acid, and epidermal and vascular endothelial growth factors (EGF and VEGF). Procedures for introducing boron atoms into these HMW agents and their chemical properties will be discussed. In vivo studies on their biodistribution will be described, and the efficacy of a subset of them, which have been used for BNCT of tumors in experimental animals, will be discussed. Since brain tumors currently are the primary candidates for treatment by BNCT, delivery of these HMW agents across the blood-brain barrier presents a special challenge. Various routes of administration will be discussed including receptor-facilitated transcytosis following intravenous administration, direct intratumoral injection and convection enhanced delivery by which a pump is used to apply a pressure gradient to establish bulk flow of the HMW agent during interstitial infusion. Finally, we will conclude with a discussion relating to issues that must be addressed if these HMW agents are to be used clinically.


Clinical Cancer Research | 2006

Molecular Targeting and Treatment of EGFRvIII-Positive Gliomas Using Boronated Monoclonal Antibody L8A4

Weilian Yang; Rolf F. Barth; Gong Wu; Shinji Kawabata; Thomas J. Sferra; Achintya K. Bandyopadhyaya; Werner Tjarks; Amy K. Ferketich; Melvin L. Moeschberger; Peter J. Binns; Kent J. Riley; Jeffrey A. Coderre; Michael J. Ciesielski; Robert A. Fenstermaker; Carol J. Wikstrand

Purpose: The purpose of the present study was to evaluate a boronated EGFRvIII-specific monoclonal antibody, L8A4, for boron neutron capture therapy (BNCT) of the receptor-positive rat glioma, F98npEGFRvIII. Experimental Design: A heavily boronated polyamido amine (PAMAM) dendrimer (BD) was chemically linked to L8A4 by two heterobifunctional reagents, N-succinimidyl 3-(2-pyridyldithio)propionate and N-(k-maleimidoundecanoic acid)hydrazide. For in vivo studies, F98 wild-type receptor-negative or EGFRvIII human gene-transfected receptor-positive F98npEGFRvIII glioma cells were implanted i.c. into the brains of Fischer rats. Biodistribution studies were initiated 14 days later. Animals received [125I]BD-L8A4 by either convection enhanced delivery (CED) or direct i.t. injection and were euthanized 6, 12, 24, or 48 hours later. Results: At 6 hours, equivalent amounts of the bioconjugate were detected in receptor-positive and receptor-negative tumors, but by 24 hours the amounts retained by receptor-positive gliomas were 60.1% following CED and 43.7% following i.t. injection compared with 14.6% ID/g by receptor-negative tumors. Boron concentrations in normal brain, blood, liver, kidneys, and spleen all were at nondetectable levels (<0.5 μg/g) at the corresponding times. Based on these favorable biodistribution data, BNCT studies were initiated at the Massachusetts Institute of Technology Research Reactor-II. Rats received BD-L8A4 (∼40 μg 10B/∼750 μg protein) by CED either alone or in combination with i.v. boronophenylalanine (BPA; 500 mg/kg). BNCT was carried out 24 hours after administration of the bioconjugate and 2.5 hours after i.v. injection of BPA for those animals that received both agents. Rats that received BD-L8A4 by CED in combination with i.v. BPA had a mean ± SE survival time of 85.5 ± 15.5 days with 20% long-term survivors (>6 months) and those that received BD-L8A4 alone had a mean ± SE survival time of 70.4 ± 11.1 days with 10% long-term survivors compared with 40.1 ± 2.2 days for i.v. BPA and 30.3 ± 1.6 and 26.3 ± 1.1 days for irradiated and untreated controls, respectively. Conclusions: These data convincingly show the therapeutic efficacy of molecular targeting of EGFRvIII using either boronated monoclonal antibody L8A4 alone or in combination with BPA and should provide a platform for the future development of combinations of high and low molecular weight delivery agents for BNCT of brain tumors.


Clinical Cancer Research | 2008

Molecular targeting and treatment of composite EGFR and EGFRvIII-positive gliomas using boronated monoclonal antibodies.

Weilian Yang; Gong Wu; Rolf F. Barth; Michele Swindall; Achintya K. Bandyopadhyaya; Werner Tjarks; Kevin P. Tordoff; Melvin L. Moeschberger; Thomas J. Sferra; Peter J. Binns; Kent J. Riley; Michael J. Ciesielski; Robert A. Fenstermaker; Carol J. Wikstrand

Purpose: The purpose of the present study was to evaluate the anti–epidermal growth factor receptor (EGFR) monoclonal antibody (mAb), cetuximab, (IMC-C225) and the anti-EGFRvIII mAb, L8A4, used in combination as delivery agents for boron neutron capture therapy (BNCT) of a rat glioma composed of a mixture of cells expressing either wild-type (F98EGFR) or mutant receptors(F98npEGFRvIII). Experimental Design: A heavily boronated polyamidoamine dendrimer (BD) was linked by heterobifunctional reagents to produce the boronated mAbs, BD-C225 and BD-L8A4. For in vivo biodistribution and therapy studies, a mixture of tumor cells were implanted intracerebrally into Fischer rats. Biodistribution studies were carried out by administering 125I-labeled bioconjugates via convection-enhanced delivery (CED), and for therapy studies, nonradiolabeled bioconjugates were used for BNCT. This was carried out 14 days after tumor implantation and 24 h after CED at the Massachusetts Institute of Technology nuclear reactor. Results: Following CED of a mixture of 125I-BD-C225 and 125I-BD-L8A4 to rats bearing composite tumors, 61.4% of the injected dose per gram (ID/g) was localized in the tumor compared with 30.8% ID/g for 125I-BD-L8A4 and 34.7% ID/g for 125I-BD-C225 alone. The corresponding calculated tumor boron values were 24.4 μg/g for rats that received both mAbs, and 12.3 and 13.8 μg/g, respectively, for BD-L8A4 or BD-C225 alone. The mean survival time of animals bearing composite tumors, which received both mAbs, was 55 days (P < 0.0001) compared with 36 days for BD-L8A4 and 38 days for BD-C225 alone, which were not significantly different from irradiated controls. Conclusions: Both EGFRvIII and wild-type EGFR tumor cell populations must be targeted using a combination of BD-cetuximab and BD-L8A4. Although in vitro C225 recognized both receptors, in vivo it was incapable of delivering the requisite amount of 10B for BNCT of EGFRvIII-expressing gliomas.


Journal of Chemical Information and Modeling | 2009

Carborane Clusters in Computational Drug Design: A Comparative Docking Evaluation Using AutoDock, FlexX, Glide, and Surflex

Rohit Tiwari; Kiran V. Mahasenan; Ryan E. Pavlovicz; Chenglong Li; Werner Tjarks

Compounds containing boron atoms play increasingly important roles in the therapy and diagnosis of various diseases, particularly cancer. However, computational drug design of boron-containing therapeutics and diagnostics is hampered by the fact that many software packages used for this purpose lack parameters for all or part of the various types of boron atoms. In the present paper, we describe simple and efficient strategies to overcome this problem, which are based on the replacement of boron atom types with carbon atom types. The developed methods were validated by docking closo- and nido-carboranyl antifolates into the active site of a human dihydrofolate reductase (hDHFR) using AutoDock, Glide, FlexX, and Surflex and comparing the obtained docking poses with the poses of their counterparts in the original hDHFR-carboranyl antifolate crystal structures. Under optimized conditions, AutoDock and Glide were equally good in docking of the closo-carboranyl antifolates followed by Surflex and FlexX, whereas Autodock, Glide, and Surflex proved to be comparably efficient in the docking of nido-carboranyl antifolates followed by FlexX. Differences in geometries and partial atom charges in the structures of the carboranyl antifolates resulting from different data sources and/or optimization methods did not impact the docking performances of AutoDock or Glide significantly. Binding energies predicted by all four programs were in accordance with experimental data.


Cancer Research | 2004

Boron-Containing Nucleosides as Potential Delivery Agents for Neutron Capture Therapy of Brain Tumors

Rolf F. Barth; Weilian Yang; Ashraf S. Al-Madhoun; Jayaseharan Johnsamuel; Youngjoo Byun; Subhash Chandra; Duane R. Smith; Werner Tjarks; Staffan Eriksson

The purpose of the present study was to evaluate both in vitro and in vivo a series of boron-containing nucleosides that potentially could be used as delivery agents for neutron capture therapy. The rationale for their synthesis was based on the fact that proliferating neoplastic cells have increased requirements for nucleic acid precursors, and, therefore, they should preferentially localize in the tumor. A series of 3-carboranlyalkyl thymidine analogs has been synthesized and a subset, designated N4, N5, and N7, and the corresponding 3-dihydroxypropyl derivatives, designated N4–2OH, N5–2OH, and N7–2OH, have been selected for evaluation. Using these compounds as substrates for recombinant human thymidine kinase-1 and the mitochondrial isoenzyme thymidine kinase-2, the highest phosphorylation levels relative to thymidine were seen with N5 and the corresponding dihydroxypropyl analog N5–2OH. In contrast, N4, N4-OH, N7, and N7-OH had substantially lower phosphorylation levels. To compare compounds with high and low thymidine kinase-1 substrate activity, N5 and N7 and the corresponding dihydroxypropyl derivatives were selected for evaluation of their cellular toxicity, uptake and retention by the F98 rat glioma, human MRA melanoma, and murine L929 cell lines, all of which are thymidine kinase-1(+), and a mutant L929 cell line that is thymidine kinase-1(−). N5–2OH was the least toxic (IC50, 43–70 μm), and N7 and N7–2OH were the most toxic (IC50, 18–49 μm). The highest boron uptake was seen with N7–2OH by the MRA 27 melanoma and L929 wild-type (wt) cell lines. The highest retention was seen with L929 (wt) cells, and this ranged from 29% for N5–2OH to 46% for N7. Based on the in vitro toxicity and uptake data, N5–2OH was selected for in vivo biodistribution studies either in rats bearing intracerebral implants of the F98 glioma or in mice bearing either s.c. or intracerebral implants of L929 (wt) tumors. At 2.5 hours after convection-enhanced delivery, the boron values for the F98 glioma and normal brain were 16.2 ± 2.3 and 2.2 μg/g, respectively, and the tumor to brain ratio was 8.5. Boron values at 4 hours after convection-enhanced delivery of N5–2OH to mice bearing intracerebral implants of L929 (wt) or L929 thymidine kinase-1(−) tumors were 39.8 ± 10.8 and 12.4 ± 1.6 μg/g, respectively, and the corresponding normal brain values were 4.4 and 1.6 μg/g, thereby indicating that there was selective retention by the thymidine kinase-1(+) tumors. Based on these favorable in vitro and in vivo data, neutron capture therapy studies will be initiated using N5–2OH in combination with two non-cell cycle dependent boron delivery agents, boronophenylalanine and sodium borocaptate.


Journal of Organometallic Chemistry | 2000

The use of boron clusters in the rational design of boronated nucleosides for neutron capture therapy of cancer

Werner Tjarks

Abstract Boron neutron capture therapy (BNCT) is a chemoradio–therapeutic method for the treatment of cancer. It depends on the selective targeting of tumor cells by boron-containing compounds. One category of BNCT agents that has received extensive attention during recent years is boronated nucleosides. Such structures may be converted to the corresponding 5′-monophosphates by phosphorylating enzymes and thereby entrapped in tumor cells by the virtue of the acquired negative charge. This review analyzes previous design strategies applied in the synthesis of boron cluster-containing nucleosides and discusses possible future developments in this field based on existing knowledge of enzyme tissue expressions, enzyme substrate specificities, and contemporary trends in rational drug design.

Collaboration


Dive into the Werner Tjarks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Staffan Eriksson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gong Wu

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashraf S. Al-Madhoun

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge