Werner Urland
University of Fribourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Werner Urland.
Physical Chemistry Chemical Physics | 2013
Harry Ramanantoanina; Werner Urland; Fanica Cimpoesu; Claude Daul
Herein we present a Ligand Field Density Functional Theory (LFDFT) based methodology for the analysis of the 4f(n)→ 4f(n-1)5d(1) transitions in rare earth compounds and apply it for the characterization of the 4f(2)→ 4f(1)5d(1) transitions in the quantum cutter Cs2KYF6:Pr(3+) with the elpasolite structure type. The methodological advances are relevant for the analysis and prospection of materials acting as phosphors in light-emitting diodes. The positions of the zero-phonon energy corresponding to the states of the electron configurations 4f(2) and 4f(1)5d(1) are calculated, where the praseodymium ion may occupy either the Cs(+)-, K(+)- or the Y(3+)-site, and are compared with available experimental data. The theoretical results show that the occupation of the three undistorted sites allows a quantum-cutting process. However size effects due to the difference between the ionic radii of Pr(3+) and K(+) as well as Cs(+) lead to the distortion of the K(+)- and the Cs(+)-site, which finally exclude these sites for quantum-cutting. A detailed discussion about the origin of this distortion is also described.
Inorganic Chemistry | 2015
Gregory Morrison; Harry Ramanantoanina; Werner Urland; Mark D. Smith; Hans-Conrad zur Loye
The flux growth of uranium(IV) oxides presents several challenges, and to the best of our knowledge, only one example has ever been reported. We succeeded in growing two new reduced uranium silicates A2USi6O15 (A = K, Rb) under flux growth conditions in sealed copper tubes. The compounds crystallize in a new structure type with space group C2/c and lattice parameters a = 24.2554(8) Å, b = 7.0916(2) Å, c = 17.0588(6) Å, β = 97.0860(6) ° (K) and a = 24.3902(8) Å, b = 7.1650(2) Å, c = 17.2715(6) Å, β = 96.8600(6) ° (Rb). A2USi6O15 (A = K, Rb) are isocompositional to a previously reported Cs2USi6O15, and the two structures are compared. K2USi6O15 undergoes an interesting crystal-to-crystal structural phase transition at T ≈ 225 K to a triclinic structure, which is accompanied by an intense color change. The magnetic properties of A2USi6O15 (A = K, Rb, Cs) are reported and differ from the magnetism observed in other U(4+) compounds. Calculations are performed on the (UO6)(-8) clusters of K2USi6O15 to study the cause of these unique magnetic properties.
Molecular Physics | 2015
Fanica Cimpoesu; Bogdan Frecus; Corneliu I. Oprea; Harry Ramanantoanina; Werner Urland; Claude Daul
A series of computational experiments performed with various methods belonging to wave-function and density functional theories approaches the issue of bonding regime and exchange coupling in the title compounds. Gd2@C80 is computed with a very weak exchange coupling, the sign depending on the method, while Gd2@C79N has resulted with a strong coupling and ferromagnetic ground state, irrespective of the computational approach. The multi-configuration calculation and broken symmetry estimation are yielding closely coincident coupling constants, of about J ∼ 400 cm−1. No experimental estimation exists, but the ferromagnetic ground state of Gd2@C79N is confirmed from paramagnetic resonance data. The different behaviour is due to particularities of electron accommodation in the orbital scheme. The exchange effects localised on atom lead to preference for parallel alignment of the electrons placed in the 4f and 5d lanthanide shells, determining also a ferromagnetic inter-centre coupling. The structural insight is completed with a ligand field analysis of the density functional theory results in the context of frozen density embedding. The energy decomposition analysis of bonding effects is also discussed. Finally, with the help of home-made codes (named Xatom+Xsphere), a model for the atom encapsulated in a cage is designed, the exemplified numeric experiments showing relevance for the considered endohedral metallo-fullerene issues.
Chemistry: A European Journal | 2018
Amador García-Fuente; Florian Baur; Fanica Cimpoesu; A. Vega; Thomas Jüstel; Werner Urland
A theoretical model that allows to predict, for the first time, the luminescence properties of a new phosphor (BaSnSi3 O9 :Eu2+ ) is presented. The predicted emission wavelength, 488 nm with a 64 nm bandwidth, was confirmed by subsequent experimental work. The method consists in a multi-electron Hamiltonian parametrized from ab initio calculations. The luminescence properties of other similar compounds (i.e., BaHfSi3 O9 :Eu2+ and BaZrSi3 O9 :Eu2+ ), for which there is already experimental information, were also correctly reproduced.
Chemical Physics Letters | 2013
Harry Ramanantoanina; Werner Urland; Amador García-Fuente; Fanica Cimpoesu; Claude Daul
Physical Chemistry Chemical Physics | 2014
Fanica Cimpoesu; Nita Dragoe; Harry Ramanantoanina; Werner Urland; Claude Daul
Physical Chemistry Chemical Physics | 2014
Harry Ramanantoanina; Werner Urland; Amador García-Fuente; Fanica Cimpoesu; Claude Daul
Physical Chemistry Chemical Physics | 2016
Markus Suta; Werner Urland; Claude Daul; Claudia Wickleder
Physical Chemistry Chemical Physics | 2014
Harry Ramanantoanina; Werner Urland; Fanica Cimpoesu; Claude Daul
Physical Chemistry Chemical Physics | 2015
Claudio Bulloni; Amador García-Fuente; Werner Urland; Claude Daul