Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wes Sechrest is active.

Publication


Featured researches published by Wes Sechrest.


Nature | 2004

Effectiveness of the global protected area network in representing species diversity

Ana S. L. Rodrigues; Sandy Andelman; Mohamed I. Bakarr; Luigi Boitani; Thomas M. Brooks; Richard M. Cowling; Lincoln D. C. Fishpool; Gustavo A. B. da Fonseca; Kevin J. Gaston; Michael R. Hoffmann; Janice S. Long; Pablo A. Marquet; John D. Pilgrim; Robert L. Pressey; Jan Schipper; Wes Sechrest; Simon N. Stuart; Les G. Underhill; Robert W. Waller; Matthew E. Watts; Xie Emily Yan

The Fifth World Parks Congress in Durban, South Africa, announced in September 2003 that the global network of protected areas now covers 11.5% of the planets land surface. This surpasses the 10% target proposed a decade earlier, at the Caracas Congress, for 9 out of 14 major terrestrial biomes. Such uniform targets based on percentage of area have become deeply embedded into national and international conservation planning. Although politically expedient, the scientific basis and conservation value of these targets have been questioned. In practice, however, little is known of how to set appropriate targets, or of the extent to which the current global protected area network fulfils its goal of protecting biodiversity. Here, we combine five global data sets on the distribution of species and protected areas to provide the first global gap analysis assessing the effectiveness of protected areas in representing species diversity. We show that the global network is far from complete, and demonstrate the inadequacy of uniform—that is, ‘one size fits all’—conservation targets.


Ecology | 2009

PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals

Kate E. Jones; Jon Bielby; Marcel Cardillo; Susanne A. Fritz; Justin O'Dell; C. David L. Orme; Kamran Safi; Wes Sechrest; Elizabeth H. Boakes; Chris Carbone; Christina Connolly; Michael J. Cutts; Janine K. Foster; Richard Grenyer; Michael B. Habib; Christopher A. Plaster; Samantha A. Price; Elizabeth A. Rigby; Janna Rist; Amber G. F. Teacher; Olaf R. P. Bininda-Emonds; John L. Gittleman; Georgina M. Mace; Andy Purvis

Analyses of life-history, ecological, and geographic trait differences among species, their causes, correlates, and likely consequences are increasingly important for understanding and conserving biodiversity in the face of rapid global change. Assembling multispecies trait data from diverse literature sources into a single comprehensive data set requires detailed consideration of methods to reliably compile data for particular species, and to derive single estimates from multiple sources based on different techniques and definitions. Here we describe PanTHERIA, a species-level data set compiled for analysis of life history, ecology, and geography of all known extant and recently extinct mammals. PanTHERIA is derived from a database capable of holding multiple geo-referenced values for variables within a species containing 100 740 lines of biological data for extant and recently extinct mammalian species, collected over a period of three years by 20 individuals. PanTHERIA also includes spatial databases o...


BioScience | 2004

Global gap analysis: Priority regions for expanding the global protected-area network

Ana S. L. Rodrigues; H. Resit Akçakaya; Sandy Andelman; Mohamed I. Bakarr; Luigi Boitani; Thomas M. Brooks; Janice Chanson; Lincoln D. C. Fishpool; Gustavo A. B. da Fonseca; Kevin J. Gaston; Michael R. Hoffmann; Pablo A. Marquet; John D. Pilgrim; Robert L. Pressey; Jan Schipper; Wes Sechrest; Simon N. Stuart; Les G. Underhill; Robert W. Waller; Matthew E. Watts; Xie Yan

Abstract Protected areas are the single most important conservation tool. The global protected-area network has grown substantially in recent decades, now occupying 11.5% of Earths land surface, but such growth has not been strategically aimed at maximizing the coverage of global biodiversity. In a previous study, we demonstrated that the global network is far from complete, even for the representation of terrestrial vertebrate species. Here we present a first attempt to provide a global framework for the next step of strategically expanding the network to cover mammals, amphibians, freshwater turtles and tortoises, and globally threatened birds. We identify unprotected areas of the world that have remarkably high conservation value (irreplaceability) and are under serious threat. These areas concentrate overwhelmingly in tropical and subtropical moist forests, particularly on tropical mountains and islands. The expansion of the global protected-area network in these regions is urgently needed to prevent the loss of unique biodiversity.


BioScience | 2004

Key Biodiversity Areas as Site Conservation Targets

Güven Eken; Leon Bennun; Thomas M. Brooks; Will Darwall; Lincoln D. C. Fishpool; Matt Foster; David Knox; Penny F. Langhammer; Paul Matiku; Elizabeth A. Radford; Paul Salaman; Wes Sechrest; Michael Leonard Smith; Sacha Spector; Andrew W. Tordoff

Abstract Site conservation is among the most effective means to reduce global biodiversity loss. Therefore, it is critical to identify those sites where unique biodiversity must be conserved immediately. To this end, the concept of key biodiversity areas (KBAs) has been developed, seeking to identify and, ultimately, ensure that networks of globally important sites are safeguarded. This methodology builds up from the identification of species conservation targets (through the IUCN Red List) and nests within larger-scale conservation approaches. Sites are selected using standardized, globally applicable, threshold-based criteria, driven by the distribution and population of species that require site-level conservation. The criteria address the two key issues for setting site conservation priorities: vulnerability and irreplaceability. We also propose quantitative thresholds for the identification of KBAs meeting each criterion, based on a review of existing approaches and ecological theory to date. However, these thresholds require extensive testing, especially in aquatic systems.


The American Naturalist | 2003

Comparative Tests of Parasite Species Richness in Primates

Charles L. Nunn; Sonia Altizer; Kate E. Jones; Wes Sechrest

Some hosts harbor diverse parasite communities, whereas others are relatively parasite free. Many factors have been proposed to account for patterns of parasite species richness, but few studies have investigated competing hypotheses among multiple parasite communities in the same host clade. We used a comparative data set of 941 host‐parasite combinations, representing 101 anthropoid primate species and 231 parasite taxa, to test the relative importance of four sets of variables that have been proposed as determinants of parasite community diversity in primates: host body mass and life history, social contact and population density, diet, and habitat diversity. We defined parasites broadly to include not only parasitic helminths and arthropods but also viruses, bacteria, fungi, and protozoa, and we controlled for effects of uneven sampling effort on per‐host measures of parasite diversity. In nonphylogenetic tests, body mass was correlated with total parasite diversity and the diversity of helminths and viruses. When phylogeny was taken into account, however, body mass became nonsignificant. Host population density, a key determinant of parasite spread in many epidemiological models, was associated consistently with total parasite species richness and the diversity of helminths, protozoa, and viruses tested separately. Geographic range size and day range length explained significant variation in the diversity of viruses.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Hotspots and the conservation of evolutionary history

Wes Sechrest; Thomas M. Brooks; Gustavo A. B. da Fonseca; William R. Konstant; Russell A. Mittermeier; Andy Purvis; Anthony B. Rylands; John L. Gittleman

Species diversity is unevenly distributed across the globe, with terrestrial diversity concentrated in a few restricted biodiversity hotspots. These areas are associated with high losses of primary vegetation and increased human population density, resulting in growing numbers of threatened species. We show that conservation of these hotspots is critical because they harbor even greater amounts of evolutionary history than expected by species numbers alone. We used supertrees for carnivores and primates to estimate that nearly 70% of the total amount of evolutionary history represented in these groups is found in 25 biodiversity hotspots.


BioScience | 2004

Coverage Provided by the Global Protected-Area System: Is It Enough?

Thomas M. Brooks; Mohamed I. Bakarr; Tim Boucher; Gustavo A. B. da Fonseca; Craig Hilton-Taylor; Jonathan M. Hoekstra; T. O. M. Moritz; Silvio Olivieri; Jeff Parrish; Robert L. Pressey; Ana S. L. Rodrigues; Wes Sechrest; Ali Stattersfield; Wendy Strahm; Simon N. Stuart

Abstract Protected-area targets of 10% of a biome, of a country, or of the planet have often been used in conservation planning. The new World Database on Protected Areas shows that terrestrial protected-area coverage now approaches 12% worldwide. Does this mean that the establishment of new protected areas can cease? This was the core question of the “Building Comprehensive Protected Area Systems” stream of the Fifth World Parks Congress in Durban, South Africa, in 2003. To answer it requires global gap analysis, the subject of the special section of BioScience for which this article serves as an introduction. We also provide an overview of the extraordinary data sets now available to allow global gap analysis and, based on these, an assessment of the degree to which existing protected-area systems represent biodiversity. Coverage varies geographically, but is less than 2% for some bioregions, and more than 12% of 11,633 bird, mammal, amphibian, and turtle species are wholly unrepresented. The global protected-area systems are far from complete.


Journal of Mammalogy | 2007

Persistence of Large Mammal Faunas as Indicators of Global Human Impacts

John Morrison; Wes Sechrest; Eric Dinerstein; David S. Wilcove; John F. Lamoreux

Abstract Large mammals often play critical roles within ecosystems by affecting either prey populations or the structure and species composition of surrounding vegetation. However, large mammals are highly vulnerable to extirpation by humans and consequently, severe contractions of species ranges result in intact large mammal faunas becoming increasingly rare. We compared historical (AD 1500) range maps of large mammals with their current distributions to determine which areas today retain complete assemblages of large mammals. We estimate that less than 21% of the earths terrestrial surface still contains all of the large (>20 kg) mammals it once held, with the proportion varying between 68% in Australasia to only 1% in Indomalaya. Although the presence of large mammals offers no guarantee of the presence of all smaller animals, their absence represents an ecologically based measurement of human impacts on biodiversity. Given the ecological importance of large mammals and their vulnerability to extinction, better protection and extension of sites containing complete assemblages of large mammals is urgently needed.


The American Naturalist | 2004

Parasites and the Evolutionary Diversification of Primate Clades

Charles L. Nunn; Sonia Altizer; Wes Sechrest; Kate E. Jones; Robert A. Barton; John L. Gittleman

Coevolutionary interactions such as those between hosts and parasites have been regarded as an underlying cause of evolutionary diversification, but evidence from natural populations is limited. Among primates and other mammalian groups, measures of host diversification rates vary widely among lineages, but comparative studies have not yet identified a reliable explanation for this variation. In this study, we used a comprehensive data set of disease‐causing organisms from free‐living primates to illustrate how phylogenetic comparative methods can be used to examine mammalian lineage diversity in relation to parasite species richness. Our results provide evidence that the phylogenetic diversity of primate clades is correlated positively with the number of parasite species harbored by each host and that this pattern is largely independent of other host traits that have been shown to influence diversification rates and parasite species richness in primates. We investigated two possible mechanisms that could explain this association, namely that parasites themselves drive host evolutionary diversification through processes linked with sexual selection and that host shifts or host sharing increases parasite species richness among diverse primate clades. Neither parasite species richness nor host diversification is related to measures of sexual selection in primates. Further, we found only partial evidence that more rapidly diversifying host lineages produced increased opportunities for host sharing or host shifting by parasites through mechanisms involving species’ geographic range overlap. Thus, our analyses provide evidence for an important link between the evolutionary diversification of primates and the richness of their parasite communities, but other mechanisms, particularly those related to reciprocal selection or coextinction of hosts and parasites, require further investigation.


BioScience | 2017

An ecoregion-based approach to protecting half the terrestrial realm

Eric Dinerstein; David Olson; Anup R. Joshi; Carly Vynne; Neil D. Burgess; Eric Wikramanayake; Nathan Hahn; Suzanne Palminteri; Prashant Hedao; Reed F. Noss; Matthew C. Hansen; Harvey Locke; Erle C. Ellis; Benjamin S. Jones; Charles Victor Barber; Randy Hayes; Cyril Kormos; Vance G. Martin; Eileen Crist; Wes Sechrest; Lori Price; Jonathan E. M. Baillie; Don Weeden; Kieran Suckling; Crystal L. Davis; Nigel Sizer; Rebecca Moore; David Thau; Tanya Birch; Peter V. Potapov

Abstract We assess progress toward the protection of 50% of the terrestrial biosphere to address the species-extinction crisis and conserve a global ecological heritage for future generations. Using a map of Earths 846 terrestrial ecoregions, we show that 98 ecoregions (12%) exceed Half Protected; 313 ecoregions (37%) fall short of Half Protected but have sufficient unaltered habitat remaining to reach the target; and 207 ecoregions (24%) are in peril, where an average of only 4% of natural habitat remains. We propose a Global Deal for Nature—a companion to the Paris Climate Deal—to promote increased habitat protection and restoration, national- and ecoregion-scale conservation strategies, and the empowerment of indigenous peoples to protect their sovereign lands. The goal of such an accord would be to protect half the terrestrial realm by 2050 to halt the extinction crisis while sustaining human livelihoods.

Collaboration


Dive into the Wes Sechrest's collaboration.

Top Co-Authors

Avatar

Thomas M. Brooks

Conservation International

View shared research outputs
Top Co-Authors

Avatar

Simon N. Stuart

Conservation International

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate E. Jones

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy Purvis

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Bielby

Zoological Society of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge