Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wesley B. Baker is active.

Publication


Featured researches published by Wesley B. Baker.


Reports on Progress in Physics | 2010

Diffuse optics for tissue monitoring and tomography

Turgut Durduran; Regine Choe; Wesley B. Baker; Arjun G. Yodh

This review describes the diffusion model for light transport in tissues and the medical applications of diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The theoretical basis for near-infrared or diffuse optical spectroscopy (NIRS or DOS, respectively) is developed, and the basic elements of diffuse optical tomography (DOT) are outlined. We also discuss diffuse correlation spectroscopy (DCS), a technique whereby temporal correlation functions of diffusing light are transported through tissue and are used to measure blood flow. Essential instrumentation is described, and representative brain and breast functional imaging and monitoring results illustrate the workings of these new tissue diagnostics.


Biomedical Optics Express | 2014

Modified Beer-Lambert law for blood flow

Wesley B. Baker; Ashwin B. Parthasarathy; David R. Busch; Rickson C. Mesquita; Joel H. Greenberg; Arjun G. Yodh

We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.


Brain Stimulation | 2012

The effect of right vagus nerve stimulation on focal cerebral ischemia: an experimental study in the rat

Zhenghui Sun; Wesley B. Baker; Teruyuki Hiraki; Joel H. Greenberg

BACKGROUND The aim of this study was to determine the effect of vagus nerve stimulation (VNS) on infarct size after transient and after permanent focal cerebral ischemia in rats and to test the hypothesis that VNS-induced neuroprotection is due to changes in cerebral blood flow. METHODS Ischemia was produced by either temporary proximal middle cerebral artery occlusion (TMCAO) or permanent distal middle cerebral artery occlusion (PMCAO). Stimulating electrodes were implanted on the cervical part of the right vagus nerve, and electrical stimulation was initiated 30 minutes after the induction of ischemia and delivered for 30 seconds every 5 minutes for 1 hour. All the procedures were duplicated but no stimulus was delivered in control groups. Cerebral blood flow in the MCA territory was continuously monitored with laser speckle contrast imaging. A neurologic evaluation was undertaken after 24 hours of ischemia, and animals were euthanized and neuronal damage evaluated. RESULTS Ischemic lesion volume was smaller in VNS-treated animals in both the temporary and permanent ischemic groups (P<.01). VNS-treated animals in TMCAO had better functional scores at 24 hours as compared with control animals (P<.01), but there were no statistically significant differences in the neurobehavioral scores in PMCAO (P=.089). Cerebral blood flow changes in the MCA territory during ischemia did not differ between the VNS-treated animals and control animals in either group. CONCLUSIONS VNS offers neuroprotection against stroke in both temporary and permanent ischemia. Although the precise mechanism of this effect remains to be determined, alterations in cerebral blood flow do not appear to play a role. VNS could readily be translated to clinical practice.


Journal of Cerebral Blood Flow and Metabolism | 2013

Neurovascular coupling varies with level of global cerebral ischemia in a rat model

Wesley B. Baker; Zhenghui Sun; Teruyuki Hiraki; Mary E. Putt; Turgut Durduran; Martin Reivich; Arjun G. Yodh; Joel H. Greenberg

In this study, cerebral blood flow, oxygenation, metabolic, and electrical functional responses to forepaw stimulation were monitored in rats at different levels of global cerebral ischemia from mild to severe. Laser speckle contrast imaging and optical imaging of intrinsic signals were used to measure changes in blood flow and oxygenation, respectively, along with a compartmental model to calculate changes in oxygen metabolism from these measured changes. To characterize the electrical response to functional stimulation, we measured somatosensory evoked potentials (SEPs). Global graded ischemia was induced through unilateral carotid artery occlusion, bilateral carotid artery occlusion, bilateral carotid and right subclavian artery (SCA) occlusion, or carotid and SCA occlusion with negative lower body pressure. We found that the amplitude of the functional metabolic response remained tightly coupled to the amplitude of the SEP at all levels of ischemia observed. However, as the level of ischemia became more severe, the flow response was more strongly attenuated than the electrical response, suggesting that global ischemia was associated with an uncoupling between the functional flow and electrical responses.


Journal of Neuroscience Research | 2012

Effect of vagus nerve stimulation during transient focal cerebral ischemia on chronic outcome in rats

Teruyuki Hiraki; Wesley B. Baker; Joel H. Greenberg

The aim of this study was to investigate the effect of vagus nerve stimulation (VNS) on infarct volume and neurological recovery up to 3 weeks following transient focal cerebral ischemia. Transient ischemia was produced by filament occlusion of the proximal middle cerebral artery (MCA) in rats. The right vagus nerve was stimulated starting 30 min after MCA occlusion and consisted of 30‐sec pulse trains (20 Hz) delivered to the animals right vagus nerve every 5 min for a total period of 60 min (n = 10). All the procedures were duplicated, but no stimulus was delivered, in a control group (n = 10). Neurological evaluations were performed in all animals at 24 hr, 48 hr, 1 week, 2 weeks, and 3 weeks after MCA occlusion; animals were euthanized; and neuronal damage was evaluated in hematoxylin‐eosin‐stained sections. The ischemic lesion volume was smaller in the VNS‐treated animals in comparison with the nonstimulated group (P < 0.02). Although the functional score in both treated and untreated groups improved over the 3‐week observation period (P < 0.001), there was still a statistically significant improvement reszulting from VNS treatment compared with control animals (P < 0.05). Cerebral blood flow changes in the MCA territory during ischemia did not differ between the VNS‐treated animals (31.9% ± 10.4% of baseline) and control animals (29.9% ± 9.1%; P = 0.6). Stimulation of the vagus nerve for only a brief period early in ischemia provides neuroprotection in transient ischemia, with neuroprotection persisting for at least 3 weeks.


Academic Radiology | 2014

Blood Flow Reduction in Breast Tissue due to Mammographic Compression

David R. Busch; Regine Choe; Turgut Durduran; Daniel H. Friedman; Wesley B. Baker; Andrew D. A. Maidment; Mark A. Rosen; Mitchell D. Schnall; Arjun G. Yodh

RATIONALE AND OBJECTIVES This study measures hemodynamic properties such as blood flow and hemoglobin concentration and oxygenation in the healthy human breast under a wide range of compressive loads. Because many breast-imaging technologies derive contrast from the deformed breast, these load-dependent vascular responses affect contrast agent-enhanced and hemoglobin-based breast imaging. METHODS Diffuse optical and diffuse correlation spectroscopies were used to measure the concentrations of oxygenated and deoxygenated hemoglobin, lipid, water, and microvascular blood flow during axial breast compression in the parallel-plate transmission geometry. RESULTS Significant reductions (P < .01) in total hemoglobin concentration (∼30%), blood oxygenation (∼20%), and blood flow (∼87%) were observed under applied pressures (forces) of up to 30 kPa (120 N) in 15 subjects. Lipid and water concentrations changed <10%. CONCLUSIONS Imaging protocols based on injected contrast agents should account for variation in tissue blood flow due to mammographic compression. Similarly, imaging techniques that depend on endogenous blood contrasts will be affected by breast compression during imaging.


Biomedical Optics Express | 2016

Fast blood flow monitoring in deep tissues with real-time software correlators

Detian Wang; Ashwin B. Parthasarathy; Wesley B. Baker; Kimberly Gannon; Venki Kavuri; Tiffany Ko; Steven S. Schenkel; Zhe Li; Zeren Li; Michael T. Mullen; John A. Detre; Arjun G. Yodh

We introduce, validate and demonstrate a new software correlator for high-speed measurement of blood flow in deep tissues based on diffuse correlation spectroscopy (DCS). The software correlator scheme employs standard PC-based data acquisition boards to measure temporal intensity autocorrelation functions continuously at 50 - 100 Hz, the fastest blood flow measurements reported with DCS to date. The data streams, obtained in vivo for typical source-detector separations of 2.5 cm, easily resolve pulsatile heart-beat fluctuations in blood flow which were previously considered to be noise. We employ the device to separate tissue blood flow from tissue absorption/scattering dynamics and thereby show that the origin of the pulsatile DCS signal is primarily flow, and we monitor cerebral autoregulation dynamics in healthy volunteers more accurately than with traditional instrumentation as a result of increased data acquisition rates. Finally, we characterize measurement signal-to-noise ratio and identify count rate and averaging parameters needed for optimal performance.


Frontiers in Neuroenergetics | 2010

The Biological Effect of Contralateral Forepaw Stimulation in Rat Focal Cerebral Ischemia: A Multispectral Optical Imaging Study

Janos Lückl; Wesley B. Baker; Zhenghui Sun; Turgut Durduran; Arjun G. Yodh; Joel H. Greenberg

Our group has already published the possible neuroprotective effect of contralateral forepaw stimulation in temporary focal ischemia in a study. However, the background is still unclear. In the present study we investigated the possible mechanism by monitoring focal ischemia with multispectral [laser speckle, imaging of intrinsic signals (OIS)] imaging. Sprague–Dawley rats were prepared using 1.2% isoflurane anesthesia. The middle cerebral artery was occluded by photothrombosis (4 mW) and the common carotid artery was ligated permanently. Physiological variables were constantly monitored during the experiment. A 6 × 6 mm area centered 3 mm posterior and 4 mm lateral to Bregma was thinned for laser speckle and OIS imaging. Nine circular regions of interests (0.3 mm in diameter) were evenly spaced on the speckle contrast image for the analysis of peri-infarct flow transients, blood flow, and metabolic changes. Both the sham (n = 7) and forepaw-stimulated animals (n = 7) underwent neurological examinations 24 h after ischemia at which point all animals were sacrificed and the infarct size was determined by triphenyltetrazolium chloride. The physiological variables were in normal range and the experimental protocol did not cause significant differences between groups. Both the neurological scores (sham: 3.6 ± 1.7, stimulated: 4.3 ± 1.4) and the infarct volume (sham: 124 ± 39 mm3, stimulated: 147 ± 47 mm3) did not show significant differences between groups. The forepaw stimulation did not increase the intra-ischemic flow neither over the penumbral or the peri-ischemic area. However, the hemoglobin transients related metabolic load (CMRO2) was significantly lower (p < 0.001) while the averaged number of hyperemic flow transients were significantly (p = 0.013) higher in the forepaw (sham: 3.5 ± 2.2, stimulated: 7.0 ± 2.3) stimulated animals.


Neurophotonics | 2015

Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts.

Wesley B. Baker; Ashwin B. Parthasarathy; Tiffany Ko; David R. Busch; Kenneth Abramson; Shih-Yu Tzeng; Rickson C. Mesquita; Turgut Durduran; Joel H. Greenberg; David Kung; Arjun G. Yodh

Abstract. We introduce and validate a pressure measurement paradigm that reduces extracerebral contamination from superficial tissues in optical monitoring of cerebral blood flow with diffuse correlation spectroscopy (DCS). The scheme determines subject-specific contributions of extracerebral and cerebral tissues to the DCS signal by utilizing probe pressure modulation to induce variations in extracerebral blood flow. For analysis, the head is modeled as a two-layer medium and is probed with long and short source-detector separations. Then a combination of pressure modulation and a modified Beer-Lambert law for flow enables experimenters to linearly relate differential DCS signals to cerebral and extracerebral blood flow variation without a priori anatomical information. We demonstrate the algorithm’s ability to isolate cerebral blood flow during a finger-tapping task and during graded scalp ischemia in healthy adults. Finally, we adapt the pressure modulation algorithm to ameliorate extracerebral contamination in monitoring of cerebral blood oxygenation and blood volume by near-infrared spectroscopy.


Journal of Biomedical Optics | 2015

Calibration of diffuse correlation spectroscopy blood flow index with venous-occlusion diffuse optical spectroscopy in skeletal muscle.

Zhe Li; Wesley B. Baker; Ashwin B. Parthasarathy; Tiffany Ko; Detian Wang; Steven S. Schenkel; Turgut Durduran; Gang Li; Arjun G. Yodh

Abstract. We investigate and assess the utility of a simple scheme for continuous absolute blood flow monitoring based on diffuse correlation spectroscopy (DCS). The scheme calibrates DCS using venous-occlusion diffuse optical spectroscopy (VO-DOS) measurements of arm muscle tissue at a single time-point. A calibration coefficient (γ) for the arm is determined, permitting conversion of DCS blood flow indices to absolute blood flow units, and a study of healthy adults (N=10) is carried out to ascertain the variability of γ. The average DCS calibration coefficient for the right (i.e., dominant) arm was γ=(1.24±0.15)×108 (mL·100  mL−1·min−1)/(cm2/s). However, variability can be significant and is apparent in our site-to-site and day-to-day repeated measurements. The peak hyperemic blood flow overshoot relative to baseline resting flow was also studied following arm-cuff ischemia; excellent agreement between VO-DOS and DCS was found (R2=0.95, slope=0.94±0.07, mean difference=−0.10±0.45). Finally, we show that incorporation of subject-specific absolute optical properties significantly improves blood flow calibration accuracy.

Collaboration


Dive into the Wesley B. Baker's collaboration.

Top Co-Authors

Avatar

Arjun G. Yodh

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Busch

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

John A. Detre

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Michael T. Mullen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Joel H. Greenberg

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Ramani Balu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Turgut Durduran

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kimberly Gannon

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge