Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Whitney Cary is active.

Publication


Featured researches published by Whitney Cary.


Molecular Neurobiology | 2012

Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington's disease.

Scott D. Olson; Kari Pollock; Amal Kambal; Whitney Cary; Gaela Mitchell; Jeremy Tempkin; Heather Stewart; Jeannine McGee; Gerhard Bauer; Hyun Sook Kim; Teresa Tempkin; Vicki Wheelock; Geralyn Annett; Gary L. Dunbar; Jan A. Nolta

There is much interest in the use of mesenchymal stem cells/marrow stromal cells (MSC) to treat neurodegenerative disorders, in particular those that are fatal and difficult to treat, such as Huntington’s disease. MSC present a promising tool for cell therapy and are currently being tested in FDA-approved phase I–III clinical trials for many disorders. In preclinical studies of neurodegenerative disorders, MSC have demonstrated efficacy, when used as delivery vehicles for neural growth factors. A number of investigators have examined the potential benefits of innate MSC-secreted trophic support and augmented growth factors to support injured neurons. These include overexpression of brain-derived neurotrophic factor and glial-derived neurotrophic factor, using genetically engineered MSC as a vehicle to deliver the cytokines directly into the microenvironment. Proposed regenerative approaches to neurological diseases using MSC include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation, MSC in the brain promote endogenous neuronal growth, encourage synaptic connection from damaged neurons, decrease apoptosis, reduce levels of free radicals, and regulate inflammation. These abilities are primarily modulated through paracrine actions. Clinical trials for MSC injection into the central nervous system to treat amyotrophic lateral sclerosis, traumatic brain injury, and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of Huntington’s disease is discussed.


Molecular and Cellular Neuroscience | 2012

Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington's disease affected neuronal cells for reduction of huntingtin.

Scott D. Olson; Amal Kambal; Kari Pollock; Gaela Mitchell; Heather Stewart; Stefanos Kalomoiris; Whitney Cary; Catherine Nacey; Karen Pepper; Jan A. Nolta

Huntingtons disease (HD) is a fatal, autosomal dominant neurodegenerative disorder caused by an expanded trinucleotide (CAG) repeat in exon 1 of the huntingtin gene (Htt). This expansion creates a toxic polyglutamine tract in the huntingtin protein (HTT). Currently, there is no treatment for either the progression or prevention of the disease. RNA interference (RNAi) technology has shown promise in transgenic mouse models of HD by reducing expression of mutant HTT and slowing disease progression. The advancement of RNAi therapies to human clinical trials is hampered by problems delivering RNAi to affected neurons in a robust and sustainable manner. Mesenchymal stem cells (MSC) have demonstrated a strong safety profile in both completed and numerous ongoing clinical trials. MSC exhibit a number of innate therapeutic effects, such as immune system modulation, homing to injury, and cytokine release into damaged microenvironments. The ability of MSC to transfer larger molecules and even organelles suggested their potential usefulness as delivery vehicles for therapeutic RNA inhibition. In a series of model systems we have found evidence that MSC can transfer RNAi targeting both reporter genes and mutant huntingtin in neural cell lines. MSC expressing shRNA antisense to GFP were found to decrease expression of GFP in SH-SY5Y cells after co-culture when assayed by flow cytometry. Additionally MSC expressing shRNA antisense to HTT were able to decrease levels of mutant HTT expressed in both U87 and SH-SY5Y target cells when assayed by Western blot and densitometry. These results are encouraging for expanding the therapeutic abilities of both RNAi and MSC for future treatments of Huntingtons disease.


Molecular Therapy | 2011

Generation of HIV-1 Resistant and Functional Macrophages From Hematopoietic Stem Cell–derived Induced Pluripotent Stem Cells

Amal Kambal; Gaela Mitchell; Whitney Cary; William Gruenloh; Yunjoon Jung; Stefanos Kalomoiris; Catherine Nacey; Jeannine McGee; Matt Lindsey; Brian Fury; Gerhard Bauer; Jan A. Nolta; Joseph S. Anderson

Induced pluripotent stem cells (iPSCs) have radically advanced the field of regenerative medicine by making possible the production of patient-specific pluripotent stem cells from adult individuals. By developing iPSCs to treat HIV, there is the potential for generating a continuous supply of therapeutic cells for transplantation into HIV-infected patients. In this study, we have used human hematopoietic stem cells (HSCs) to generate anti-HIV gene expressing iPSCs for HIV gene therapy. HSCs were dedifferentiated into continuously growing iPSC lines with four reprogramming factors and a combination anti-HIV lentiviral vector containing a CCR5 short hairpin RNA (shRNA) and a human/rhesus chimeric TRIM5α gene. Upon directed differentiation of the anti-HIV iPSCs toward the hematopoietic lineage, a robust quantity of colony-forming CD133(+) HSCs were obtained. These cells were further differentiated into functional end-stage macrophages which displayed a normal phenotypic profile. Upon viral challenge, the anti-HIV iPSC-derived macrophages exhibited strong protection from HIV-1 infection. Here, we demonstrate the ability of iPSCs to develop into HIV-1 resistant immune cells and highlight the potential use of iPSCs for HIV gene and cellular therapies.


Molecular Therapy | 2016

Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington’s Disease Mouse Models

Kari Pollock; Heather Dahlenburg; Haley Nelson; Kyle D. Fink; Whitney Cary; Kyle J. Hendrix; Geralyn Annett; Audrey Torrest; Peter Deng; Joshua Gutierrez; Catherine Nacey; Karen Pepper; Stefanos Kalomoiris; Johnathon D. Anderson; Jeannine McGee; William Gruenloh; Brian Fury; Gerhard Bauer; Alexandria Duffy; Theresa Tempkin; Vicki Wheelock; Jan A. Nolta

Huntingtons disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimers disease, and some forms of Parkinsons disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies.Huntingtons disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimers disease, and some forms of Parkinsons disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies.


Neuroreport | 2018

Generation of human vascularized brain organoids

Missy T. Pham; Kari Pollock; Melanie D. Rose; Whitney Cary; Heather Stewart; Ping Zhou; Jan A. Nolta; Ben Waldau

The aim of this study was to vascularize brain organoids with a patient’s own endothelial cells (ECs). Induced pluripotent stem cells (iPSCs) of one UC Davis patient were grown into whole-brain organoids. Simultaneously, iPSCs from the same patient were differentiated into ECs. On day 34, the organoid was re-embedded in Matrigel with 250 000 ECs. Vascularized organoids were grown in vitro for 3–5 weeks or transplanted into immunodeficient mice on day 54, and animals were perfused on day 68. Coating of brain organoids on day 34 with ECs led to robust vascularization of the organoid after 3–5 weeks in vitro and 2 weeks in vivo. Human CD31-positive blood vessels were found inside and in-between rosettes within the center of the organoid after transplantation. Vascularization of brain organoids with a patient’s own iPSC-derived ECs is technically feasible.


Investigative Ophthalmology & Visual Science | 2016

Intravitreal Administration of Human Bone Marrow CD34+ Stem Cells in a Murine Model of Retinal Degeneration

Elad Moisseiev; Zeljka Smit-McBride; Sharon L. Oltjen; Pengfei Zhang; Robert J. Zawadzki; Monica J. Motta; Christopher J. Murphy; Whitney Cary; Geralyn Annett; Jan A. Nolta; Susanna S. Park

Purpose Intravitreal murine lineage-negative bone marrow (BM) hematopoietic cells slow down retinal degeneration. Because human BM CD34+ hematopoietic cells are not precisely comparable to murine cells, this study examined the effect of intravitreal human BM CD34+ cells on the degenerating retina using a murine model. Methods C3H/HeJrd1/rd1 mice, immunosuppressed systemically with tacrolimus and rapamycin, were injected intravitreally with PBS (n = 16) or CD34+ cells (n = 16) isolated from human BM using a magnetic cell sorter and labeled with enhanced green fluorescent protein (EGFP). After 1 and 4 weeks, the injected eyes were imaged with scanning laser ophthalmoscopy (SLO)/optical coherence tomography (OCT) and tested with electroretinography (ERG). Eyes were harvested after euthanasia for immunohistochemical and microarray analysis of the retina. Results In vivo SLO fundus imaging visualized EGFP-labeled cells within the eyes following intravitreal injection. Simultaneous OCT analysis localized the EGFP-labeled cells on the retinal surface resulting in a saw-toothed appearance. Immunohistochemical analysis of the retina identified EGFP-labeled cells on the retinal surface and adjacent to ganglion cells. Electroretinography testing showed a flat signal both at 1 and 4 weeks following injection in all eyes. Microarray analysis of the retina following cell injection showed altered expression of more than 300 mouse genes, predominantly those regulating photoreceptor function and maintenance and apoptosis. Conclusions Intravitreal human BM CD34+ cells rapidly home to the degenerating retinal surface. Although a functional benefit of this cell therapy was not seen on ERG in this rapidly progressive retinal degeneration model, molecular changes in the retina associated with CD34+ cell therapy suggest potential trophic regenerative effects that warrant further exploration.


Cell Transplantation | 2016

Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts.

Kyle D. Fink; Peter Deng; Josh Gutierrez; Joseph S. Anderson; Audrey Torrest; Anvita Komarla; Stefanos Kalomoiris; Whitney Cary; Johnathon D. Anderson; William Gruenloh; Alexandra Duffy; Teresa Tempkin; Geralyn Annett; Vicki Wheelock; David J. Segal; Jan A. Nolta

Huntingtons disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG repeats. Although pathogenesis has been attributed to this polyglutamine expansion, the underlying mechanisms through which the huntingtin protein functions have yet to be elucidated. It has been suggested that postnatal reduction of mutant huntingtin through protein interference or conditional gene knockout could prove to be an effective therapy for patients suffering from HD. For allele-specific targeting, transcription activator-like effectors (TALE) were designed to target single-nucleotide polymorphisms (SNP) in the mutant allele and packaged into a vector backbone containing KRAB to promote transcriptional repression of the disease-associated allele. Additional TALEs were packaged into a vector backbone containing heterodimeric FokI and were designed to be used as nucleases (TALEN) to cause a CAG-collapse in the mutant allele. Human HD fibroblasts were treated with each TALE-SNP or TALEN. Allele-expression was measured using a SNP-genotyping assay and mutant protein aggregation was quantified with Western blots for anti-ubiquitin. The TALE-SNP and TALEN significantly reduced mutant allele expression (p < 0.05) when compared to control transfections while not affecting expression of the nondisease allele. This study demonstrates the potential of allele-specific gene modification using TALE proteins, and provides a foundation for targeted treatment for individuals suffering from Huntingtons or other genetically linked diseases.


World Neurosurgery | 2015

Efficient Generation of Induced Pluripotent Stem and Neural Progenitor Cells From Acutely Harvested Dura Mater Obtained During Ventriculoperitoneal Shunt Surgery

Whitney Cary; Courtney Namiko Hori; Missy T. Pham; Catherine Nacey; Jeannine McGee; Mattan Hamou; Robert F. Berman; Gerhard Bauer; Jan A. Nolta; Ben Waldau

BACKGROUND The dura mater can be easily biopsied during most cranial neurosurgical operations. We describe a protocol that allows for robust generation of induced pluripotent stem cells (iPSCs) and neural progenitors from acutely harvested dura mater. OBJECTIVE To generate iPSCs and neural progenitor cells from dura mater obtained during ventriculoperitoneal shunt surgery. METHODS Dura was obtained during ventriculoperitoneal shunt surgery for normal pressure hydrocephalus from a 60-year-old patient with severe cognitive impairment. Fibroblasts were isolated from the dural matrix and transduced with nonintegrating Sendai virus for iPSC induction. A subset of successfully generated iPSC clones underwent immunocytochemical analysis, teratoma assay, karyotyping, and targeted neural differentiation. RESULTS Eleven iPSC clones were obtained from the transduction of an estimated 600,000 dural fibroblasts after 3 passages. Three clones underwent immunocytochemical analysis and were shown to express the transcription factors OCT-4, SOX2, and the embryonic cell markers SSEA-4, TRA-1-60, and Nanog. Two clones were tested for pluripotency and formed teratomas at the injection site in immunodeficient mice. Three clones underwent chromosomal analysis and were found to have a normal metaphase spread and karyotype. One clone underwent targeted neural differentiation and formed neural rosettes as well as TuJ1/SOX1-positive neural progenitor cells. CONCLUSIONS IPSCs and neural progenitor cells can be efficiently derived from the dura of patients who need to undergo cranial neurosurgical operations. IPSCs were obtained with a nonintegrating virus and exhibited a normal karyotype, making them candidates for future autotransplantation after targeted differentiation to treat functional deficits.


Neurology | 2016

Mesenchymal Stem Cells Engineered to Overexpress Brain-Derived Neurotrophic Factor as a Proposed Therapeutic for Huntington’s Disease (S25.007)

Vicki Wheelock; Kari Pollock; Heather Dahlenberg; Hayley Nelson; Kyle D. Fink; Whitney Cary; Kyle J. Hendrix; Geralyn Annett; Audrey Torrest; Peter Deng; Josh Gutierrez; Catherine Nacy; Karen Pepper; Stefanos Kalomoiris; Johnathon D. Anderson; Jeannine McGee; William Gruenloh; Brian Fury; Gerhard Bauer; Alexandra Duffy; Teresa Tempkin; Jan A. Nolta


Investigative Ophthalmology & Visual Science | 2016

Gene Expression Changes and Pathway Analysis of the Degenerating Murine Retina in Response to Intravitreal Administration of Human CD34+ Stem Cells

Zeljka Smit-McBride; Elad Moisseiev; Whitney Cary; Geralyn Annett; Jan A. Nolta; Susanna S. Park

Collaboration


Dive into the Whitney Cary's collaboration.

Top Co-Authors

Avatar

Jan A. Nolta

University of California

View shared research outputs
Top Co-Authors

Avatar

Geralyn Annett

University of California

View shared research outputs
Top Co-Authors

Avatar

Gerhard Bauer

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeannine McGee

University of California

View shared research outputs
Top Co-Authors

Avatar

Kari Pollock

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amal Kambal

University of California

View shared research outputs
Top Co-Authors

Avatar

Gaela Mitchell

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge