Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wibke E. Diederich is active.

Publication


Featured researches published by Wibke E. Diederich.


ChemMedChem | 2008

Computer-aided design and synthesis of nonpeptidic plasmepsin II and IV inhibitors.

Torsten Luksch; Nan‐Si Chan; Sascha Brass; Christoph A. Sotriffer; Gerhard Klebe; Wibke E. Diederich

Plasmepsins (Plm) II (EC number: 3.4.23.39) and IV (EC number: 3.4.23.B14) are aspartic proteases present in the food vacuole of the malaria parasite Plasmodium falciparum and are involved in host hemoglobin degradation. Based on our established efficient synthetic sequence, a series of inhibitors for Plm II and IV has been synthesized bearing a 2,3,4,7‐tetrahydro‐1H‐azepine scaffold as the core structural element. During the computational design cycle, thorough investigations were carried out in order to find a reasonable theoretical binding mode for Plm II and IV. The conformation of Plm II in the crystal structure (PDB code: 1LF2) provides a good starting geometry for our virtual screening approach. In contrast, the only available co‐crystal structure for Plm IV of P. falciparum (PDB code: 1LS5) appears inappropriate for inhibitor design. Therefore, a homology model was constructed based on the Plm II 1LF2 structure. A combinatorial docking run using FlexXc suggested compounds which, after synthesis, turned out to exhibit affinities in the sub‐micromolar range. The observed structure–activity relationships of the synthesized compounds confirm the assumed binding mode for Plm II and IV. The best‐binding inhibitors designed for Plm II and IV are devoid of any inhibitory potency against human cathepsin D (EC number: 3.4.23.5).


Antimicrobial Agents and Chemotherapy | 2015

Novel Dengue Virus NS2B/NS3 Protease Inhibitors

Hongmei Wu; Stefanie Bock; Mariya Snitko; Thilo Berger; Thomas Weidner; Steven Holloway; Manuel Kanitz; Wibke E. Diederich; Holger Steuber; Christof Walter; Daniela Hofmann; Benedikt Weißbrich; Ralf Spannaus; Eliana G. Acosta; Ralf Bartenschlager; Bernd Engels; Tanja Schirmeister; Jochen Bodem

ABSTRACT Dengue fever is a severe, widespread, and neglected disease with more than 2 million diagnosed infections per year. The dengue virus NS2B/NS3 protease (PR) represents a prime target for rational drug design. At the moment, there are no clinical PR inhibitors (PIs) available. We have identified diaryl (thio)ethers as candidates for a novel class of PIs. Here, we report the selective and noncompetitive inhibition of the serotype 2 and 3 dengue virus PR in vitro and in cells by benzothiazole derivatives exhibiting 50% inhibitory concentrations (IC50s) in the low-micromolar range. Inhibition of replication of DENV serotypes 1 to 3 was specific, since all substances influenced neither hepatitis C virus (HCV) nor HIV-1 replication. Molecular docking suggests binding at a specific allosteric binding site. In addition to the in vitro assays, a cell-based PR assay was developed to test these substances in a replication-independent way. The new compounds inhibited the DENV PR with IC50s in the low-micromolar or submicromolar range in cells. Furthermore, these novel PIs inhibit viral replication at submicromolar concentrations.


ChemMedChem | 2008

Targeting the open-flap conformation of HIV-1 protease with pyrrolidine-based inhibitors.

Jark Böttcher; Andreas Blum; Stefanie Dörr; Andreas Heine; Wibke E. Diederich; Gerhard Klebe

HIV protease is a well‐established drug target in antiviral chemotherapy. Immense research efforts have been made to discover effective inhibitors, thus making the enzyme one of the most studied and best characterized proteins. Although the protease exhibits high flexibility, all approved drugs target virtually the same protein conformation. The development of viral cross‐resistance demands the generation of inhibitors with novel scaffolds and deviating modes of binding. Herein we report the design and the short, high‐yielding stereoselective synthesis of a series of chiral, symmetric pyrrolidine‐based inhibitors targeting the open‐flap conformation of the protease. The obtained co‐crystal structure with one derivative provides a valuable starting point for further inhibitor design.


Bioorganic & Medicinal Chemistry | 2015

Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies.

Lorena Ramos Freitas de Sousa; Hongmei Wu; Liliane Nebo; João B. Fernandes; Maria Fátima das Graças Fernandes da Silva; Werner Kiefer; Manuel Kanitz; Jochen Bodem; Wibke E. Diederich; Tanja Schirmeister; Paulo C. Vieira

NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 μM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 μM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 μM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors.


ChemMedChem | 2015

One Question, Multiple Answers: Biochemical and Biophysical Screening Methods Retrieve Deviating Fragment Hit Lists.

Johannes Schiebel; Nedyalka Radeva; Helene Köster; Alexander Metz; Timo Krotzky; Maren Kuhnert; Wibke E. Diederich; Andreas Heine; Lars Neumann; Cédric Atmanene; Dominique Roecklin; Valérie Vivat-Hannah; Jean-Paul Renaud; Robert Meinecke; Nina Schlinck; Astrid Sitte; Franziska Popp; Markus Zeeb; Gerhard Klebe

Fragment‐based lead discovery is gaining momentum in drug development. Typically, a hierarchical cascade of several screening techniques is consulted to identify fragment hits which are then analyzed by crystallography. Because crystal structures with bound fragments are essential for the subsequent hit‐to‐lead‐to‐drug optimization, the screening process should distinguish reliably between binders and non‐binders. We therefore investigated whether different screening methods would reveal similar collections of putative binders. First we used a biochemical assay to identify fragments that bind to endothiapepsin, a surrogate for disease‐relevant aspartic proteases. In a comprehensive screening approach, we then evaluated our 361‐entry library by using a reporter‐displacement assay, saturation‐transfer difference NMR, native mass spectrometry, thermophoresis, and a thermal shift assay. While the combined results of these screening methods retrieve 10 of the 11 crystal structures originally predicted by the biochemical assay, the mutual overlap of individual hit lists is surprisingly low, highlighting that each technique operates on different biophysical principles and conditions.


Journal of Medicinal Chemistry | 2012

(Z)-2-(2-bromophenyl)-3-{[4-(1-methyl-piperazine)amino]phenyl}acrylonitrile (DG172): an orally bioavailable PPARβ/δ-selective ligand with inverse agonistic properties.

Sonja Lieber; Frithjof Scheer; Wolfgang Meissner; Simone Naruhn; Till Adhikary; Sabine Müller-Brüsselbach; Wibke E. Diederich; Rolf Müller

The ligand-regulated nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a potential pharmacological target due to its role in disease-related biological processes. We used TR-FRET-based competitive ligand binding and coregulator interaction assays to screen 2693 compounds of the Open Chemical Repository of the NCI/NIH Developmental Therapeutics Program for inhibitory PPARβ/δ ligands. One compound, (Z)-3-(4-dimethylamino-phenyl)-2-phenyl-acrylonitrile, was used for a systematic SAR study. This led to the design of derivative 37, (Z)-2-(2-bromophenyl)-3-{[4-(1-methyl-piperazine)amino]phenyl}acrylonitrile (DG172), a novel PPARβ/δ-selective ligand showing high binding affinity (IC(50) = 27 nM) and potent inverse agonistic properties. 37 selectively inhibited the agonist-induced activity of PPARβ/δ, enhanced transcriptional corepressor recruitment, and down-regulated transcription of the PPARβ/δ target gene Angptl4 in mouse myoblasts (IC(50) = 9.5 nM). Importantly, 37 was bioavailable after oral application to mice with peak plasma levels in the concentration range of its maximal inhibitory potency, suggesting that 37 will be an invaluable tool to elucidate the functions and therapeutic potential of PPARβ/δ.


Molecular Pharmacology | 2011

High-Affinity Peroxisome Proliferator-Activated Receptor β/δ-Specific Ligands with Pure Antagonistic or Inverse Agonistic Properties

Simone Naruhn; Philipp M. Toth; Till Adhikary; Kerstin Kaddatz; Veronika Pape; Stefanie Dörr; Gerhard Klebe; Sabine Müller-Brüsselbach; Wibke E. Diederich; Rolf Müller

Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a ligand-regulated nuclear receptor with essential functions in metabolism and inflammation. We have synthesized a new derivative [methyl 3-(N-(4-(hexylamino)-2-methoxyphenyl)sulfamoyl)thiophene-2-carboxylate (ST247) structurally related to the published PPARβ/δ inhibitory ligand methyl 3-(N-(2-methoxy-4-(phenylamino)phenyl)sulfamoyl)thiophene-2-carboxylate (GSK0660). ST247 has a higher affinity to PPARβ/δ than GSK0660, and at equimolar concentrations, it more efficiently 1) induces the interaction with corepressors both in vitro and in vivo, 2) inhibits the agonist-induced transcriptional activity of PPARβ/δ, and 3) down-regulates basal level expression of the peroxisome proliferator responsive element-driven PPARβ/δ target gene ANGPTL4. Methyl 3-(N-(4-(tert-butylamino)-2-methoxyphenyl)sulfamoyl)thiophene-2-carboxylate (PT-S58), another high-affinity derivative from our series, also efficiently inhibits agonist-induced transcriptional activation, but in contrast to ST247, it does not enhance the interaction of PPARβ/δ with corepressors. PT-S58 rather prevents corepressor recruitment triggered by the inverse agonist ST247. These findings classify ST247 as an inverse agonist, whereas PT-S58 is the first pure PPARβ/δ antagonist described to date. It is noteworthy that ST247 and PT-S58 are also effective on PPRE-independent functions of PPARβ/δ: in monocytic cells, both ligands modulate expression of the activation marker CCL2 in the opposite direction as an established PPARβ/δ agonist. The possibility to differentially modulate specific functions of PPARβ/δ makes these novel compounds invaluable tools to advance our understanding of PPARβ/δ biology.


ChemMedChem | 2010

Fragment-based lead discovery: screening and optimizing fragments for thermolysin inhibition.

Lisa Englert; Katrin Silber; Holger Steuber; Sascha Brass; Björn Over; Hans-Dieter Gerber; Andreas Heine; Wibke E. Diederich; Gerhard Klebe

Fragment‐based drug discovery has gained a foothold in todays lead identification processes. We present the application of in silico fragment‐based screening for the discovery of novel lead compounds for the metalloendoproteinase thermolysin. We have chosen thermolysin to validate our screening approach as it is a well‐studied enzyme and serves as a model system for other proteases. A protein‐targeted virtual library was designed and screening was carried out using the program AutoDock. Two fragment hits could be identified. For one of them, the crystal structure in complex with thermolysin is presented. This compound was selected for structure‐based optimization of binding affinity and improvement of ligand efficiency, while concomitantly keeping the fragment‐like properties of the initial hit. Redesigning the zinc coordination group revealed a novel class of fragments possessing Ki values as low as 128 μM, thus they provide a good starting point for further hit evolution in a tailored lead design.


Current Topics in Medicinal Chemistry | 2010

Proteases of Plasmodium falciparum as Potential Drug Targets and Inhibitors Thereof

Christof Wegscheid-Gerlach; Hans-Dieter Gerber; Wibke E. Diederich

Malaria, caused by protozoa of the genus Plasmodium, remains one of the most dreadful infectious diseases worldwide killing more than 1 million people per year. The emergence of multidrug-resistant parasites highly demands a steadfast and continuous search not only for new targets but also for new anti-infectives addressing the known ones. As proteases in general have been proven to be excellent drug targets and the development of inhibitors has frequently resulted in approved drugs, this review will only focus on the proteases of Plasmodium falciparum as drug targets. The completion of the sequencing of the Plasmodium falciparum genome in 2002 lead to the discovery of nearly 100 putative proteases encoded therein. Within this review, only those proteases and inhibitors thereof will be discussed in more detail, in which their biological function has been determined undoubtedly or in those cases, in which the development of specific inhibitors has significantly contributed to the understanding of the underlying biological role of the respective protease thus validating the role as promising drug target.


Nucleic Acids Research | 2015

The transcriptional PPARβ/δ network in human macrophages defines a unique agonist-induced activation state

Till Adhikary; Annika Wortmann; Tim Schumann; Florian Finkernagel; Sonja Lieber; Katrin Roth; Philipp M. Toth; Wibke E. Diederich; Andrea Nist; Thorsten Stiewe; Lara Kleinesudeik; Silke Reinartz; Sabine Müller-Brüsselbach; Rolf Müller

Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor with established metabolic functions, whereas its anti-inflammatory function is poorly understood. To address this issue, we determined the global PPARβ/δ-regulated signaling network in human monocyte-derived macrophages. Besides cell type-independent, canonical target genes with metabolic and immune regulatory functions we identified a large number of inflammation-associated NFκB and STAT1 target genes that are repressed by agonists. Accordingly, PPARβ/δ agonists inhibited the expression of multiple pro-inflammatory mediators and induced an anti-inflammatory, IL-4-like morphological phenotype. Surprisingly, bioinformatic analyses also identified immune stimulatory effects. Consistent with this prediction, PPARβ/δ agonists enhanced macrophage survival under hypoxic stress and stimulated CD8+ T cell activation, concomitantly with the repression of immune suppressive target genes and their encoded products CD274 (PD-1 ligand), CD32B (inhibitory Fcγ receptor IIB) and indoleamine 2,3-dioxygenase 1 (IDO-1), as well as a diminished release of the immune suppressive IDO-1 metabolite kynurenine. Comparison with published data revealed a significant overlap of the PPARβ/δ transcriptome with coexpression modules characteristic of both anti-inflammatory and pro-inflammatory cytokines. Our findings indicate that PPARβ/δ agonists induce a unique macrophage activation state with strong anti-inflammatory but also specific immune stimulatory components, pointing to a context-dependent function of PPARβ/δ in immune regulation.

Collaboration


Dive into the Wibke E. Diederich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge