Wichard J. D. Beenken
Technische Universität Ilmenau
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wichard J. D. Beenken.
Journal of Physical Chemistry B | 2004
Wichard J. D. Beenken; Tõnu Pullerits
In conjugated polymers the concept of spectroscopic units belonging to different spatial segments of the chain, which are responsible for the spectroscopic properties of the polymer, has been used to explain the spectral heterogeneity and the excitation migration by (Förster type) hopping transfer. In the present work we study the possible mechanism of segmentation of polythiophene into spectroscopic units by using quantum-chemical methods (ZINDO). We found that static geometric defects such as kinks or torsions do not result in a significant localization of the excited states to a certain segment. Hence, we propose that a dynamic localization of excitation due to the interaction between the nuclear and electronic degrees of freedom is responsible for the formation of the spectroscopic units.
Journal of Chemical Physics | 2004
Wichard J. D. Beenken; Tõnu Pullerits
In conjugated polymers the optical excitation energy transfer is usually described as Forster-type hopping between so-called spectroscopic units. In the simplest approach using the point-dipole approximation the transfer rate is calculated based on the interaction between the transition dipoles of two spectroscopic units. In the present work we compare this approach with three others: The line-dipole approximation, the Coulomb integral between the transition densities, and a quantum-chemical calculation of the interacting dimer as entity. The latter two approaches are based on the semiempirical method ZINDO. The line-dipole approximation is an attractive compromise between computational effort and precision for calculations of the excitonic coupling in extended conjugated polymers.
Journal of Chemical Physics | 2005
Wichard J. D. Beenken; Hans Lischka
We have studied biphenyl by time-dependent density-functional theory. In particular, we have analyzed the dependence of singlet excitation energies and transition dipoles on the torsional angle between the phenyl groups. The torsional spectrum has been computed quantum mechanically as well as semiclassically in order to understand how this influences the broadening of absorption and luminescence spectra. Our results are in best agreement with supersonic jet spectroscopy data, but also fit astonishingly well to spectra of biphenyl in condensed phase. Furthermore, we compare the torsional and vibrational relaxation and discuss qualitatively the general consequences for poly-para-phenylenes and related conjugated polymers as poly-thiophenes, considering, in particular, how side chains and solvents may affect the optical spectra.
Journal of Chemical Physics | 2006
Sebastian Westenhoff; Wichard J. D. Beenken; Arkady Yartsev; Neil C. Greenham
Conformational disorder of conjugated polymers is an important issue to be understood and quantified. In this paper we present a new method to assess the chain conformation of conjugated polymers based on measurements of intrachain energy transfer. The chain conformation is modeled on the basis of monomer-monomer interactions, such as torsion, bending, and stretching of the connecting bond. The latter two potentials are assumed to be harmonic, while the torsional potential was calculated by density functional theory using B3-LYP functional with the SVP basis set. The energy transfer dynamics of excitons on these chains are quantitatively simulated using Forster-type line-dipole energy transfer. This allows us to compare the simulated ground state conformation of single polymer chains to ultrafast depolarization experiments of poly [3-(2,5-dioctylphenyl)thiophene] in solution. We identify torsional rotation as the main contributor to conformational disorder and find that this disorder is mainly controlled by the energy difference between syn and anti bonds.
Biophysical Journal | 2004
Axel Schubert; Anna Stenstam; Wichard J. D. Beenken; Jennifer Lynn Herek; Richard J. Cogdell; Tõnu Pullerits; Villy Sundström
Controlled ensemble formation of protein-surfactant systems provides a fundamental concept for the realization of nanoscale devices with self-organizing capability. In this context, spectroscopic monitoring of pigment-containing proteins yields detailed structural information. Here we have studied the association behavior of the bacterial light-harvesting protein LH2 from Rhodobacter spheroides in an n,n-dimethyldodecylamine-n-oxide/water environment. Time-resolved studies of the excitation annihilation yielded information about aggregate sizes and packing of the protein complexes therein. The results are compared to transmission electron microscopy images of instantaneously frozen samples. Our data indicate the manifestation of different phases, which are discussed with respect to the thermodynamic equilibrium in ternary protein-surfactant-water systems. Accordingly, by varying the concentration the formation of different types of aggregates can be controlled. Conditions for the appearance of isolated LH2 complexes are defined.
Journal of Chemical Physics | 2002
Wichard J. D. Beenken; Mats Dahlbom; Pär Kjellberg; Tõnu Pullerits
In the present work we will demonstrate that the nuclear dynamics have a strong influence on the delocalization of an exciton in a dimer, even if they do not effect the excitonic interaction. It will be shown that the internal nuclear conformation of the molecules forming the dimer depends critically on the delocalization of the exciton state in the dimer and vice versa. The resulting closed loop enforces a localization of the lower excitonic state, but, contrary to the commonly accepted view, a delocalization of the upper one. Qualitatively different time-evolution of the delocalization length for the lower and upper excitonic state will be shown. Besides, it will turn out that the nuclear motions inhibit a complete delocalization of the excitonic state in any case. To accomplish nuclear and exciton dynamics, the nonadiabatic coupling between the two excitonic states will be deduced. This causes a relaxation from the upper to the lower excitonic state, which limits the maximum reachable exciton delocalization.
Journal of Physical Chemistry A | 2014
Wichard J. D. Beenken; Martin Presselt; Thien H. Ngo; Wim Dehaen; Wouter Maes; Mikalai Kruk
The individual absorption spectra of the two NH tautomers of 10-(4,6-dichloropyrimidin-5-yl)-5,15-dimesitylcorrole are assigned on the basis of the Gouterman four-orbital model and a quantum chemical TD-DFT study. The assignment indicates that the red-shifted T1 tautomer is the one with protonated pyrrole nitrogen atoms N(21), N(22) and N(23), whereas the blue-shifted T2 tautomer has pyrrole nitrogen atoms N(21), N(22) and N(24) protonated. A wave-like nonplanar distortion of the macrocycle in the ground state is found for both NH tautomers, with the wave axis going through the pyrroles containing N(22) and N(24). The 7C plane determined by the least-squares distances to the carbon atoms C1, C4, C5, C6, C9, C16, and C19 is suggested as a mean corrole macrocycle plane for the analysis of out-of-plane distortions. The magnitude of these distortions is distinctly different for the two NH tautomers, leading to substantial perturbations of their acid-base properties, which are rationalized by the interplay of the degree of out-of-plane distortion of the macrocycle as a whole and the tendency of the pyrrole nitrogen atoms toward pyramidalization, with the former leading to a basicity increase whereas the latter enhances the acidity.
Zeitschrift für Physikalische Chemie | 2006
S. Krischok; R. Öttking; Wichard J. D. Beenken; M. Himmerlich; Pierre Lorenz; Oliver Höfft; S. Bahr; V. Kempter; J.A. Schaefer
The near-surface electronic structure of the room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide has been investigated with ultraviolet and X-ray photoelectron spectroscopy as well as metastable induced electron spectroscopy. The results have been compared with density functional theory calculations. The good agreement between the experimental and theoretical data provides detailed insight into the origin of the observed spectral features. In particular, we found that a simple composition of the spectra of the isolated ions does not suffice to fit to the experimental results, but interionic interactions have to be considered.
Applied Physics Letters | 2010
Martin Presselt; Maik Bärenklau; Roland Rösch; Wichard J. D. Beenken; Erich Runge; Sviatoslav Shokhovets; Harald Hoppe; Gerhard Gobsch
We present external quantum efficiency (EQE) studies of poly(3-hexylthiophene-2,5-diyl):[6,6]-phenylC61-butyric acid methyl ester (P3HT:PCBM) based bulk heterojunction polymer solar cells with improved intensity resolution in the subbandgap (SBG) region, i.e., the energy range below the optical bandgaps of the pristine materials. Varying the P3HT:PCBM blending ratio, we find that in addition to a Gaussian profile an exponential tail is needed for a quantitative description of the SBG EQE spectra. While the exponential contribution can be reliably assigned to disorder effects, the SBG EQE Gaussian profile can be due to charge-transfer absorption between P3HT and PCBM or due to absorption of PCBM at the interface or in the polymer-rich phase.
Biophysical Journal | 2002
Axel Schubert; Wichard J. D. Beenken; Holger Stiel; Bernd Voigt; Dieter Leupold; Heiko Lokstein
Manifestation and extent of excitonic interactions in the red Chl-absorption region (Q(y) band) of trimeric LHC-II were investigated using two complementary nonlinear laser-spectroscopic techniques. Nonlinear absorption of 120-fs pulses indicates an increased absorption cross section in the red wing of the Q(y) band as compared to monomeric Chl a in organic solution. Additionally, the dependence of a nonlinear polarization response on the pump-field intensity was investigated. This approach reveals that one emitting spectral form, characterized by a 2.3(+/-0.8)-fold larger dipole strength than monomeric Chl a, dominates the fluorescence spectrum of LHC-II. Considering available structural and spectroscopic data, these results can be consistently explained assuming the existence of an excitonically coupled dimer located at Chl-bindings sites a2 and b2 (referring to the original notation of W. Nühlbrandt, D.N. Wang, and Y. Fujiyoshi, Nature, 1994, 367:614-621), which must not necessarily correspond to Chls a and b). This fluorescent dimer, terminating the excitation energy-transfer chain of the LHC-II monomeric subunit, is discussed with respect to its relevance for intra- and inter-antenna excitation energy transfer.