Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wiebke Heise is active.

Publication


Featured researches published by Wiebke Heise.


Nature | 2009

Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand

Philip E. Wannamaker; T. Grant Caldwell; George R. Jiracek; Virginie Maris; Graham Hill; Yasuo Ogawa; Hugh M. Bibby; S. L. Bennie; Wiebke Heise

Newly forming subduction zones on Earth can provide insights into the evolution of major fault zone geometries from shallow levels to deep in the lithosphere and into the role of fluids in element transport and in promoting rock failure by several modes. The transpressional subduction regime of New Zealand, which is advancing laterally to the southwest below the Marlborough strike–slip fault system of the northern South Island, is an ideal setting in which to investigate these processes. Here we acquired a dense, high-quality transect of magnetotelluric soundings across the system, yielding an electrical resistivity cross-section to depths beyond 100 km. Our data imply three distinct processes connecting fluid generation along the upper mantle plate interface to rock deformation in the crust as the subduction zone develops. Massive fluid release just inland of the trench induces fault-fracture meshes through the crust above that undoubtedly weaken it as regional shear initiates. Narrow strike–slip faults in the shallow brittle regime of interior Marlborough diffuse in width upon entering the deeper ductile domain aided by fluids and do not project as narrow deformation zones. Deep subduction-generated fluids rise from 100 km or more and invade upper crustal seismogenic zones that have exhibited historic great earthquakes on high-angle thrusts that are poorly oriented for failure under dry conditions. The fluid-deformation connections described in our work emphasize the need to include metamorphic and fluid transport processes in geodynamic models.


Earth and Planetary Science Letters | 2004

Electromagnetic imaging of Variscan crustal structures in SW Iberia: the role of interconnected graphite

Jaume Pous; Gerard Muñoz; Wiebke Heise; Joan Carles Melgarejo; Cecilio Quesada

Abstract The western part of the Iberian Peninsula (Iberian Massif) is the best exposed fragment of the Variscan orogen in Europe. Its southern half was generated by an oblique collision between three continental terranes belonging to the margins of Laurassia (Avalonia) – the South Portuguese Zone (SPZ) – and Gondwana – the Ossa Morena Zone (OMZ) and the Central Iberian Zone (CIZ). The boundaries between them are considered to be suture zones. A 200 km long magnetotelluric profile across the three Variscan terranes was done in a NNE direction, approximately perpendicular to the main tectonic features. The results of two-dimensional inversion of the MT dataset reveal high-conductivity zones coinciding with the transitions SPZ/OMZ and OMZ/CIZ. These conductive bodies related to the sutures at depth were interpreted as graphite enrichments along shear planes formed due to the overall transpressive regime. A high-conductivity layer extending along the whole OMZ was found at a depth of 15–25 km, the top of which spatially correlates with a broad reflector detected by a recently acquired deep seismic reflection profile. The high conductivity was interpreted as caused by the Precambrian Serie Negra graphite-rich rocks. Carbon and oxygen X-ray mapping with electron microprobe on polished sections of Serie Negra samples from OMZ revealed the presence of interconnected graphite, which supports the hypothesis that graphite is determinant for the high conductivity. Two graphite types, which help to record the geological evolution, were identified: graphite accumulations in the schistosity surfaces produced by folding and metamorphism, and metallic films of graphite developed along late faults. The conductive layer shows blobs of higher conductivity suggesting macro-anisotropy. Additional mylonitisation and shearing produced by thrusting at depth can be the origin of these zones of enhanced conductivity, given that the detachment level is located within the Serie Negra. Several high-resistivity features were found in the upper crust, related to Devonian and Carboniferous successions and probably to some unexposed plutons in the SPZ and the Palaeozoic series of OMZ plus some granitic intrusions. In the CIZ, a high-resistivity zone extending to the whole crust is correlated with extensive late Variscan granite intrusions.


Earth and Planetary Science Letters | 2002

Magnetotelluric study of the Las Cañadas caldera (Tenerife, Canary Islands) : structural and hydrogeological implications

Jaume Pous; Wiebke Heise; Pierre-André Schnegg; Gerard Muñoz; Joan Martí; Carles Soriano

The Las Can ‹ adas caldera in Tenerife (Canary Islands) is a well-exposed caldera depression in which the active Teide^Pico Viejo complex stands. In addition to its volcanological interest, the Las Can ‹ adas caldera also holds the main groundwater reservoir of Tenerife. An audiomagnetotelluric and magnetotelluric survey was carried out in order to image the interior of the caldera depression. The field campaign consisted of 33 audiomagnetotelluric sites in the period range from 0.001 to 0.3 s and 11 magnetotelluric sites from 0.004 to 200 s. A detailed mapping of the electrical conductivity of the subsurface was obtained. For the long periods a three-dimensional modelling of the island ^ including the bathymetry ^ was carried out to study the effect of the ocean. This effect starts to be important at periods longer than 10 s. Accordingly, the sites were arranged into six profiles and a two-dimensional joint inversion of all data until 10 s was performed for each profile. The geometry of the high conductive zones found indicates that the caldera includes two closed depressions in the western (Ucanca) and central (Guajara) sectors, whereas in the


Geology | 2010

Deep deformation pattern from electrical anisotropy in an arched orogen (Betic Cordillera, western Mediterranean)

Ana Ruiz-Constán; Jesús Galindo-Zaldívar; Antonio Pedrera; Jorge Arzate; Jaume Pous; Farida Anahnah; Wiebke Heise; Fernando A. Monteiro Santos; Carlos Marín-Lechado

Long-period magnetotelluric data acquired in the Iberian Massif and the Betic Cordillera arched orogen provide the first evidence of electrical anisotropy in the upper mantle of the Mediterranean region. Strike analysis at different periods reveals preferred structure orientation related to olivine elongation in the mantle, and points to a heterogeneous anisotropy pattern. At deep levels (periods ≥104 s), all the sites show a common north-south geoelectrical strike (∼N170°E), which may represent a low-intensity deformation, possibly related to “frozen” prealpine plate tectonics. For periods between 10 and 103 s, a north-south constant strike (∼N180°E) at the Betic Cordillera sites contrasts with the east-west strike (∼N85°E) in the Iberian Massif. An increase in the magnitude of the induction arrows from the Iberian Massif to the inner part of the Betic Cordillera probably reflects higher deformation toward the axis of the Eurasian-African plate boundary. The integration of electrical anisotropy data with seismic anisotropy allows us to discuss mantle deformation patterns produced by delamination and subduction, suggesting that the latter mechanism may be more suitable for the alpine evolution of the western Gibraltar Arc.


Geologica Acta | 2005

New magnetotelluric data trough the boundary between the Ossa Morena and Centroiberian Zones

Gerard Muñoz Soler; Wiebke Heise; C. Paz; Emerson Rodrigo Almeida; Fernando A. Monteiro Santos; Jaume Pous i Fábregas

The south-western part of the Iberian Peninsula, including the southern branch of the Iberian Massif, has recently been the subject of several magnetotelluric (MT) studies. This area is made up of three different tectonic terranes: the South Portuguese Zone (SPZ), the Ossa Morena Zone (OMZ) and the Central Iberian Zone (CIZ). The boundaries between these zones are considered to be sutures, which appear as high electrical conductivity anomalies in the MT surveys. The OMZ is characterised by a conductive layer at middle-lower crustal levels. To investigate the continuity of this conductive layer into the CIZ, a new MT profile was carried out. This 75-km long ENE profile goes through the boundary between the OMZ and the CIZ. The results of a two-dimensional magnetotelluric inversion revealed a high-conductivity anomaly in the transition OMZ/CIZ (the so-called Central Unit), which is interpreted as due to interconnected graphite along shear planes. High-conductivity anomalies appeared in the middle crust of the CIZ, whose geometry and location are consistent with the conductive layer previously found in the OMZ, thus confirming the prolongation of the conductive layer into the CIZ. The top of this layer correlated spatially with a broad reflector detected by a seismic profile previously acquired in the same area. This, together with other geological and petrological evidence, points to a common origin for both features.


Geophysical Research Letters | 2015

Three‐dimensional resistivity image of the magmatic system beneath Lastarria volcano and evidence for magmatic intrusion in the back arc (northern Chile)

Daniel Díaz; Wiebke Heise; Fernando Zamudio

Lazufre volcanic center, located in the central Andes, is recently undergoing an episode of uplift, conforming one of the most extensive deforming volcanic systems worldwide, but its magmatic system and its connection with the observed uplift are still poorly studied. Here we image the electrical resistivity structure using the magnetotelluric method in the surroundings of the Lastarria volcano, one of the most important features in the Lazufre area, to understand the nature of the magmatic plumbing, the associated fumarolic activity, and the large-scale surface deformation. Results from 3-D modeling show a conductive zone at 6 km depth south of the Lastarria volcano interpreted as the magmatic heat source which is connected to a shallower conductor beneath the volcano, showing the pathways of volcanic gasses and heated fluid. A large-scale conductive area coinciding with the area of uplift points at a magma intrusion at midcrustal depth.


Geophysical Research Letters | 2017

Mapping subduction interface coupling using magnetotellurics; Hikurangi Margin, New Zealand

Wiebke Heise; T. G. Caldwell; Stephen Bannister; Edward Bertrand; Yasuo Ogawa; S. L. Bennie; Hiroshi Ichihara

The observation of slow-slip, seismic tremor, and low-frequency earthquakes at subduction margins has provided new insight into the mechanisms by which stress accumulates between large subduction (megathrust) earthquakes. However, the relationship between the physical properties of the subduction interface and the nature of the controls on interplate seismic coupling is not fully understood. Using magnetotelluric data, we show in situ that an electrically resistive patch on the Hikurangi subduction interface corresponds with an area of increased coupling inferred from geodetic data. This resistive patch must reflect a decrease in the fluid or sediment content of the interface shear zone. Together, the magnetotelluric and geodetic data suggest that the frictional coupling of this part on the Hikurangi margin may be controlled by the interface fluid and sediment content: the resistive patch marking a fluid- and sediment-starved area with an increased density of small, seismogenic-asperities, and therefore a greater likelihood of subduction earthquake nucleation.


Tectonics | 2012

Reply to the comment by A. G. Jones et al. on “Deep resistivity cross section of the intraplate Atlas Mountains (NW Africa): New evidence of anomalous mantle and related Quaternary volcanism”

Farida Anahnah; Jesús Galindo-Zaldívar; Ahmed Chalouan; Antonio Pedrera; Patricia Ruano; Jaume Pous; Wiebke Heise; Ana Ruiz-Constán; M. Benmakhlouf; A. C. López-Garrido; M. Ahmamou; Carlos Sanz de Galdeano; Jorge Arzate; Pedro Ibarra; Lourdes González-Castillo; Naoual Bouregba; Fernando Corbo; Eva Asensio

[1] Scientific discussion and different points of view are a basis of the advancement of knowledge. We acknowledge the comments of Jones et al. [2012] as an opportunity to publicly discuss the structure and origin of the Atlas Mountains. Moreover, we welcome the opportunity to compare our results with those recently published by the group responsible for the comment [Ledo et al., 2011], although it is not pertinent to comment in detail on a paper published in another journal. We also wish to remark that the paper of Ledo et al. [2011] was reviewed and published during the revision period of our contribution [Anahnah et al., 2011]; therefore, they are two different approaches and data sets, measured in different sites and by different instruments for the same region, lending readers the chance to compare different interpretations. The main differences on the data sets are: the profile of Anahnah et al. [2011] compared with the profile of Ledo et al. [2011] is 170 km longer, vertical magnetic data were obtained and lower frequencies were recorded. [2] We regret the style and way used by Jones et al. [2012]. We shall answer only those comments of Jones et al. [2012] related to objective issues. [3] One of the final conclusions of Jones et al. [2012] might serve as the starting point of our reply:


Surveys in Geophysics | 2016

On the Coupling of Geodynamic and Resistivity Models: A Progress Report and the Way Forward

Wiebke Heise; Susan Ellis

Magnetotelluric (MT) studies represent the structure of crust and mantle in terms of conductivity anomalies, while geodynamic modelling predicts the deformation and evolution of crust and mantle subject to plate tectonic processes. Here, we review the first attempts to link MT models with geodynamic models. An integration of MT with geodynamic modelling requires the use of relationships between conductivity and rheological parameters such as viscosity and melt fraction, which are provided by laboratory measurements of rock properties. Owing to present limitations in our understanding of these relationships, and in interpreting the trade-off between scale and magnitude of conductivity anomalies from MT inversions, most studies linking MT and geodynamic models are qualitative rather than providing hard constraints. Some recent examples attempt a more quantitative comparison, such as a study from the Himalayan continental collision zone, where rheological parameters have been calculated from a resistivity model and compared to predictions from geodynamic modelling. We conclude by demonstrating the potential in combining MT results and geodynamic modelling with examples that directly use MT results as constraints within geodynamic models of ore bodies and studies of an active volcano-tectonic rift.


Geophysical Research Letters | 2007

Melt distribution beneath a young continental rift: The Taupo Volcanic Zone, New Zealand

Wiebke Heise; Hugh M. Bibby; T. Grant Caldwell; Stephen Bannister; Yasuo Ogawa; Shinichi Takakura; Toshihiro Uchida

Collaboration


Dive into the Wiebke Heise's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaume Pous

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuo Ogawa

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Ruiz-Constán

Instituto Geológico y Minero de España

View shared research outputs
Researchain Logo
Decentralizing Knowledge