Wiesław Prus-Głowacki
Adam Mickiewicz University in Poznań
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wiesław Prus-Głowacki.
Plant Systematics and Evolution | 2008
W. Wachowiak; Wiesław Prus-Głowacki
Natural hybridisation was postulated between the closely related pine species Pinus sylvestris and the P. mugo complex, however no clear evidence on propagation of mature hybrids in nature has been documented so far. To test the hybridisation hypothesis we applied chloroplast DNA (cpDNA) markers and isozymes in the analyses of 300 individuals representing the variety of morphological forms in the sympatric populations of P. sylvestris, P. mugo and P. uliginosa at the peat bog complex in the Sudety Mts., Poland. Additionally, the haplotypes of paternally inherited cpDNA of 149 open pollinated progeny derived from seeds were compared to the haplotypes of parental trees to access the intensity and direction of contemporary hybridisation. The morphologically highly variable polycormic (multi-stemmed) hybrids between P. mugo and P. uliginosa were identified. The second group of hybrids was found among the monocormic (single-stemmed) P. sylvestris-like individuals carrying the cpDNA from P. mugo complex. Hybrids of P. sylvestris as a pollen donor and P. mugo or P. uliginosa as a mother were not found, either in the group of examined trees, or among the open pollinated progeny. The results indicate that numerous hybrids can exist in the sympatric population of the species studied and that gene flow can successfully proceed from P. mugo complex to P. sylvestris. Hybridisation and ecological selection seems to play a significant role in diversification and evolution of the investigated species.
Plant Systematics and Evolution | 2003
Wiesław Prus-Głowacki; B. R. Stephan; E. Bujas; R. Alia; A. Marciniak
AbstractGenetic structure and genetic diversity in fourteen autochthonous populations of Pinus sylvestris L. from the Iberian peninsula and two populations from the Massif Central in France were studied at eleven isoenzymatic polymorphic loci. The studied populations formed two genetically similar but heterogeneous groups. The first group consist of populations localized in North-Eastern Spain with two genetically distinct populations. The second includes populations of the West-Central part of the Iberian peninsula. Populations from the Massif Central in France are diverse from those of Spain, but are similar to the group from North- part of the Iberian peninsula. The existence of significant numbers of private alleles in Spanish populations which were not observed in populations from the Massif Central, suggests that the Scots pine from the Iberian peninsula probably did not take part in the colonization of Europe after the last glaciations and represents original ancient tertiary gene pools.
Environment International | 2003
Andrzej Bytnerowicz; Ovidiu Badea; Ion Barbu; Peter Fleischer; Witold Frączek; Vladimir Gancz; Barbara Godzik; Krystyna Grodzińska; Wojciech Grodzki; David F. Karnosky; Milan Koren; Marek Krywult; Zbigniew Krzan; Roman Longauer; Blanka Mankovska; William J. Manning; Michael L. McManus; Robert C. Musselman; Julius Novotny; Flaviu Popescu; Daniela Postelnicu; Wiesław Prus-Głowacki; Paweł Skawiński; Stefan Skiba; Robert C. Szaro; Stefan Tamas; Cristian Vasile
An international cooperative project on distribution of ozone in the Carpathian Mountains, Central Europe was conducted from 1997 to 1999. Results of that project indicated that in large parts of the Carpathian Mountains, concentrations of ozone were elevated and potentially phytotoxic to forest vegetation. That study led to the establishment of new long-term studies on ecological changes in forests and other ecosystems caused by air pollution in the Retezat Mountains, Southern Carpathians, Romania and in the Tatra Mountains, Western Carpathians on the Polish-Slovak border. Both of these important mountain ranges have the status of national parks and are Man & the Biosphere Reserves. In the Retezat Mountains, the primary research objective was to evaluate how air pollution may affect forest health and biodiversity. The main research objective in the Tatra Mountains was to evaluate responses of natural and managed Norway spruce forests to air pollution and other stresses. Ambient concentrations of ozone (O(3)), sulfur dioxide (SO(2)), nitrogen oxides (NO(x)) as well as forest health and biodiversity changes were monitored on densely distributed research sites. Initial monitoring of pollutants indicated low levels of O(3), SO(2), and NO(x) in the Retezat Mountains, while elevated levels of O(3) and high deposition of atmospheric sulfur (S) and nitrogen (N) have characterized the Tatra Mountains. In the Retezat Mountains, air pollution seems to have little effect on forest health; however, there was concern that over a long time, even low levels of pollution may affect biodiversity of this important ecosystem. In contrast, severe decline of Norway spruce has been observed in the Tatra Mountains. Although bark beetle seems to be the immediate cause of that decline, long-term elevated levels of atmospheric N and S depositions and elevated O(3) could predispose trees to insect attacks and other stresses. European and US scientists studied pollution deposition, soil and plant chemistry, O(3)-sensitive plant species, forest insects, and genetic changes in the Retezat and Tatra Mountains. Results of these investigations are presented in a GIS format to allow for a better understanding of the changes and the recommendations for effective management in these two areas.
Journal of Applied Genetics | 2006
Wiesław Prus-Głowacki; Ewa Chudzińska; Aleksandra Wojnicka-Półtorak; Leon Kozacki; Katarzyna Fagiewicz
This isoenzymatic and cytogenetic study has shown significant differences in genetic composition between two groups ofPinus sylvestris trees: tolerant and sensitive to heavy metal pollution. Total and mean numbers of alleles and genotypes per locus were higher in the pollution-sensitive group of trees, but heterozygosity (Ho) was lower in this group. Fixation index (F) indicates that trees tolerant for pollution were in the Hardy-Weinberg equilibrium, while the sensitive group had a significant excess of homozygosity. Cytological analyses demonstrated numerous aberrations of chromosomes in meristematic root tissue of seedlings developed from seeds collected from trees in the polluted area. The aberrations included chromosome bridges and stickiness, laggards, retarded and forward chromosomes, and their fragments. The mitotic index was markedly lower in this group of seedlings, as compared to the control. Both isoenzymatic and cytological analyses showed a significant influence of heavy metal ions on the genetic structure of thePinus sylvestris population.
Biologia | 2013
Konrad Celiński; Ewa M. Pawlaczyk; Aleksandra Wojnicka-Półtorak; Ewa Chudzińska; Wiesław Prus-Głowacki
Pinus mugo (dwarf mountain pine) is an important component of European mountain ecosystems. However, little is known about the present genetic structure and population differentiation of this species at the DNA level, possibly due to a lack of nuclear microsatellite markers (SSR) developed for Pinus mugo. Therefore in this study we transferred microsatellite markers originally developed for Pinus sylvestris and Pinus taeda to Pinus mugo. This cross-species amplification approach is much faster and less expensive than isolation and characterization of new microsatellite markers. The transfer rates from the source species to Pinus mugo were moderately low (26%). There were no differences in microsatellite repeat motifs between the source species and Pinus mugo. Nuclear microsatellite markers successfully transferred to Pinus mugo can be applied to various genetic studies on this species, due to the high level of their polymorphism and high value of polymorphic information content.
Journal of Applied Genetics | 2009
Witold Wachowiak; Wiesław Prus-Głowacki
Recent changes in environmental conditions in populations of peat-bog pine (Pinus uliginosa Neumann) caused rapid decline or even extinction of the species in several stands in Central Europe. Conservation strategies forP. uliginosa require information about the evolutionary history and genetic structure of its populations. Using isozymes we assessed the genetic structure ofP. uliginosa from four isolated stands in Poland and compared the results to genetic structures of other closely related pine species including eight populations ofPinus mugo, ten ofPinus sylvestris and one ofPinus uncinata. The level of genetic variability ofP. uliginosa measured by the mean number of alleles per locus and average heterozygosity was similar to others related toP. uliginosa taxa from the reference group but it differs among populations. High genetic similarity was found between two populations ofP. uliginosa from Low Silesian Pinewood. The populations were genetically distinct as compared to other populations includinglocus classicus of the species from the peat bog at Batorów Reserve. Very low genetic distance (Dn = 0.002) and small genetic differentiation (GST = 0.003) were found betweenP. uliginosa andP. mugo in the sympatric populations of the species from Zieleniec peat bog suggesting the ongoing natural hybridisation and genetic contamination of peat-bog pine from this area. Some evidence for skew in allele frequency distribution potentially due to recent bottleneck was found in population from Low Silesian Pinewood. The analysed open pollinated progeny derived from twoP. uliginosa stands from Low Silesian Pine-wood showed the excess of homozygotes as compared to the maternal trees indicating high level of inbreeding (F = 0.105,F = 0.081). The results are discussed in the context of evolution ofP. uliginosa populations, taxonomic relationships between the analysed species and conservation strategies for active protection of peat-bog pine.
Archive | 2015
Ewa Chudzińska; Aleksandra Wojnicka-Półtorak; Wiesław Prus-Głowacki; Konrad Celiński; Jean Diatta; Leszek Drobek
In spite of a positive direction of changes occurring in the contaminated environment, the local industry still appears to exert a negative influence on plant vegetation. Forests which grow in many highly industrialized zones enable research on the influence of anthropopression on the natural population and are one of the best models for the study of plant adaptation to heavy metals in soil. In some cases, it is possible to follow processes of re-naturalization occurring on post-industrial areas in situ. Research undertaken in heavily polluted regions pointed to an interesting phenomenon of differentiation among the Scots pine populations with respect to the health status. Adaptive genetic diversity reflects differences in the survival capabilities of individuals exposed to stress and shows the selective pressure against trees with specific genotypes. This chapter emphasizes on the Scots pine (Pinus sylvestris L.) as one of the most frequently used bioindicators in the European forests and their application in the study of microevolutionary processes in tree populations. It may enhance a better understanding of how the soil pollution can change the genetic structure of important forest species.
Silvae Genetica | 2014
Aleksandra Wojnicka-Półtorak; Witold Wachowiak; Wiesław Prus-Głowacki; Konrad Celiński; Adolf Korczyk
Abstract The Białowiez·a Primeval Forest is located northeastern Poland. It is one of Europe’s most precious old growth forests in terms of abundance and richness of vegetation, retaining features of a primeval lowland forest which cannot be found anywhere else on the European continent. The aim of the study was to assess the genetic heterogeneity of the naturally regenerated Picea abies population using five chloroplast microsatellite markers. In total, 290 trees representing five age classes were studied. Clear patterns of genetic differentiation in relation to demographic substructuring were found within the population. The class of embryos exhibited the greatest genetic richness as evident from the highest number of alleles and haplotypes, the highest mean number of private alleles and haplotypes and the highest haplotype diversity. In the subsequent age classes, a significant decrease in the level of genetic variation was observed. Our data demonstrate that long-lived, highly outcrossing tree species growing in continuous stands can be genetically heterogeneous on a small geographic scale. The heterogeneity is related to age structure and it is likely due to the underlying mating system and selection processes.
Silvae Genetica | 1994
Wiesław Prus-Głowacki; Bruno Richard Stephan
Flora | 2005
Witold Wachowiak; Konrad Celiński; Wiesław Prus-Głowacki