Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wigard P. Kloosterman is active.

Publication


Featured researches published by Wigard P. Kloosterman.


Nature Methods | 2006

In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes

Wigard P. Kloosterman; Erno Wienholds; Ewart de Bruijn; Sakari Kauppinen; Ronald H.A. Plasterk

MicroRNAs (miRNAs) are 20–23 nucleotide (nt) RNA molecules that regulate gene expression post-transcriptionally. A key step toward understanding the function of the hundreds of miRNAs identified in animals is to determine their expression during development. Here we performed a detailed analysis of conditions for in situ detection of miRNAs in the zebrafish embryo using locked nucleic acid (LNA)-modified DNA probes and report expression patterns for 15 miRNAs in the mouse embryo.


PLOS Biology | 2007

Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development.

Wigard P. Kloosterman; Anne Karine Lagendijk; René F. Ketting; Jon D. Moulton; Ronald H.A. Plasterk

Several vertebrate microRNAs (miRNAs) have been implicated in cellular processes such as muscle differentiation, synapse function, and insulin secretion. In addition, analysis of Dicer null mutants has shown that miRNAs play a role in tissue morphogenesis. Nonetheless, only a few loss-of-function phenotypes for individual miRNAs have been described to date. Here, we introduce a quick and versatile method to interfere with miRNA function during zebrafish embryonic development. Morpholino oligonucleotides targeting the mature miRNA or the miRNA precursor specifically and temporally knock down miRNAs. Morpholinos can block processing of the primary miRNA (pri-miRNA) or the pre-miRNA, and they can inhibit the activity of the mature miRNA. We used this strategy to knock down 13 miRNAs conserved between zebrafish and mammals. For most miRNAs, this does not result in visible defects, but knockdown of miR-375 causes defects in the morphology of the pancreatic islet. Although the islet is still intact at 24 hours postfertilization, in later stages the islet cells become scattered. This phenotype can be recapitulated by independent control morpholinos targeting other sequences in the miR-375 precursor, excluding off-target effects as cause of the phenotype. The aberrant formation of the endocrine pancreas, caused by miR-375 knockdown, is one of the first loss-of-function phenotypes for an individual miRNA in vertebrate development. The miRNA knockdown strategy presented here will be widely used to unravel miRNA function in zebrafish.


Nature Genetics | 2014

Whole-genome sequence variation, population structure and demographic history of the Dutch population

Laurent C. Francioli; Androniki Menelaou; Sara L. Pulit; Freerk van Dijk; Pier Francesco Palamara; Clara C. Elbers; Pieter B. T. Neerincx; Kai Ye; Victor Guryev; Wigard P. Kloosterman; Patrick Deelen; Abdel Abdellaoui; Elisabeth M. van Leeuwen; Mannis van Oven; Martijn Vermaat; Mingkun Li; Jeroen F. J. Laros; Lennart C. Karssen; Alexandros Kanterakis; Najaf Amin; Jouke-Jan Hottenga; Eric-Wubbo Lameijer; Mathijs Kattenberg; Martijn Dijkstra; Heorhiy Byelas; Jessica van Setten; Barbera D. C. van Schaik; Jan Bot; Isaac J. Nijman; Ivo Renkens

Whole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which we sequenced the whole genomes of 250 Dutch parent-offspring families and constructed a haplotype map of 20.4 million single-nucleotide variants and 1.2 million insertions and deletions. The intermediate coverage (∼13×) and trio design enabled extensive characterization of structural variation, including midsize events (30–500 bp) previously poorly catalogued and de novo mutations. We demonstrate that the quality of the haplotypes boosts imputation accuracy in independent samples, especially for lower frequency alleles. Population genetic analyses demonstrate fine-scale structure across the country and support multiple ancient migrations, consistent with historical changes in sea level and flooding. The GoNL Project illustrates how single-population whole-genome sequencing can provide detailed characterization of genetic variation and may guide the design of future population studies.


Genome Biology | 2007

MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system

Marika Kapsimali; Wigard P. Kloosterman; Ewart de Bruijn; Frédéric M. Rosa; Ronald H.A. Plasterk; Stephen W. Wilson

BackgroundMicroRNA (miRNA) encoding genes are abundant in vertebrate genomes but very few have been studied in any detail. Bioinformatic tools allow prediction of miRNA targets and this information coupled with knowledge of miRNA expression profiles facilitates formulation of hypotheses of miRNA function. Although the central nervous system (CNS) is a prominent site of miRNA expression, virtually nothing is known about the spatial and temporal expression profiles of miRNAs in the brain. To provide an overview of the breadth of miRNA expression in the CNS, we performed a comprehensive analysis of the neuroanatomical expression profiles of 38 abundant conserved miRNAs in developing and adult zebrafish brain.ResultsOur results show miRNAs have a wide variety of different expression profiles in neural cells, including: expression in neuronal precursors and stem cells (for example, miR-92b); expression associated with transition from proliferation to differentiation (for example, miR-124); constitutive expression in mature neurons (miR-124 again); expression in both proliferative cells and their differentiated progeny (for example, miR-9); regionally restricted expression (for example, miR-222 in telencephalon); and cell-type specific expression (for example, miR-218a in motor neurons).ConclusionThe data we present facilitate prediction of likely modes of miRNA function in the CNS and many miRNA expression profiles are consistent with the mutual exclusion mode of function in which there is spatial or temporal exclusion of miRNAs and their targets. However, some miRNAs, such as those with cell-type specific expression, are more likely to be co-expressed with their targets. Our data provide an important resource for future functional studies of miRNAs in the CNS.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Differences in vertebrate microRNA expression

Brandon Ason; Diana K. Darnell; Beate Wittbrodt; Eugene Berezikov; Wigard P. Kloosterman; Jochen Wittbrodt; Parker B. Antin; Ronald H.A. Plasterk

MicroRNAs (miRNAs) attenuate gene expression by means of translational inhibition and mRNA degradation. They are abundant, highly conserved, and predicted to regulate a large number of transcripts. Several hundred miRNA classes are known, and many are associated with cell proliferation and differentiation. Many exhibit tissue-specific expression, which aids in evaluating their functions, and it has been assumed that their high level of sequence conservation implies a high level of expression conservation. A limited amount of data supports this, although discrepancies do exist. By comparing the expression of ≈100 miRNAs in medaka and chicken with existing data for zebrafish and mouse, we conclude that the timing and location of miRNA expression is not strictly conserved. In some instances, differences in expression are associated with changes in miRNA copy number, genomic context, or both between species. Variation in miRNA expression is more pronounced the greater the differences in physiology, and it is enticing to speculate that changes in miRNA expression may play a role in shaping the physiological differences produced during animal development.


Human Molecular Genetics | 2011

Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline

Wigard P. Kloosterman; Victor Guryev; Mark van Roosmalen; Karen Duran; Ewart de Bruijn; Saskia C.M. Bakker; Tom G. W. Letteboer; Bernadette P. M. van Nesselrooij; Ron Hochstenbach; Martin Poot; Edwin Cuppen

A variety of mutational mechanisms shape the dynamic architecture of human genomes and occasionally result in congenital defects and disease. Here, we used genome-wide long mate-pair sequencing to systematically screen for inherited and de novo structural variation in a trio including a child with severe congenital abnormalities. We identified 4321 inherited structural variants and 17 de novo rearrangements. We characterized the de novo structural changes to the base-pair level revealing a complex series of balanced inter- and intra-chromosomal rearrangements consisting of 12 breakpoints involving chromosomes 1, 4 and 10. Detailed inspection of breakpoint regions indicated that a series of simultaneous double-stranded DNA breaks caused local shattering of chromosomes. Fusion of the resulting chromosomal fragments involved non-homologous end joining, since junction points displayed limited or no homology and small insertions and deletions. The pattern of random joining of chromosomal fragments that we observe here strongly resembles the somatic rearrangement patterns--termed chromothripsis--that have recently been described in deranged cancer cells. We conclude that a similar mechanism may also drive the formation of de novo structural variation in the germline.


Genome Biology | 2011

Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer

Wigard P. Kloosterman; Marlous Hoogstraat; Oscar Paling; Masoumeh Tavakoli-Yaraki; Ivo Renkens; Joost S. Vermaat; Markus J. van Roosmalen; Stef van Lieshout; Isaac J. Nijman; Wijnand M. Roessingh; Ruben van 't Slot; Jose van de Belt; Victor Guryev; Marco J. Koudijs; Emile E. Voest; Edwin Cuppen

BackgroundStructural rearrangements form a major class of somatic variation in cancer genomes. Local chromosome shattering, termed chromothripsis, is a mechanism proposed to be the cause of clustered chromosomal rearrangements and was recently described to occur in a small percentage of tumors. The significance of these clusters for tumor development or metastatic spread is largely unclear.ResultsWe used genome-wide long mate-pair sequencing and SNP array profiling to reveal that chromothripsis is a widespread phenomenon in primary colorectal cancer and metastases. We find large and small chromothripsis events in nearly every colorectal tumor sample and show that several breakpoints of chromothripsis clusters and isolated rearrangements affect cancer genes, including NOTCH2, EXO1 and MLL3. We complemented the structural variation studies by sequencing the coding regions of a cancer exome in all colorectal tumor samples and found somatic mutations in 24 genes, including APC, KRAS, SMAD4 and PIK3CA. A pairwise comparison of somatic variations in primary and metastatic samples indicated that many chromothripsis clusters, isolated rearrangements and point mutations are exclusively present in either the primary tumor or the metastasis and may affect cancer genes in a lesion-specific manner.ConclusionsWe conclude that chromothripsis is a prevalent mechanism driving structural rearrangements in colorectal cancer and show that a complex interplay between point mutations, simple copy number changes and chromothripsis events drive colorectal tumor development and metastasis.


Nature Genetics | 2015

Genome-wide patterns and properties of de novo mutations in humans

Laurent C. Francioli; Paz Polak; Amnon Koren; Androniki Menelaou; Sung Chun; Ivo Renkens; Cornelia M. van Duijn; Morris A. Swertz; Cisca Wijmenga; Gert-Jan B. van Ommen; P. Eline Slagboom; Dorret I. Boomsma; Kai Ye; Victor Guryev; Peter F. Arndt; Wigard P. Kloosterman; Paul I. W. de Bakker; Shamil R. Sunyaev

Mutations create variation in the population, fuel evolution and cause genetic diseases. Current knowledge about de novo mutations is incomplete and mostly indirect. Here we analyze 11,020 de novo mutations from the whole genomes of 250 families. We show that de novo mutations in the offspring of older fathers are not only more numerous but also occur more frequently in early-replicating, genic regions. Functional regions exhibit higher mutation rates due to CpG dinucleotides and show signatures of transcription-coupled repair, whereas mutation clusters with a unique signature point to a new mutational mechanism. Mutation and recombination rates independently associate with nucleotide diversity, and regional variation in human-chimpanzee divergence is only partly explained by heterogeneity in mutation rate. Finally, we provide a genome-wide mutation rate map for medical and population genetics applications. Our results provide new insights and refine long-standing hypotheses about human mutagenesis.


Nature Genetics | 2012

Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness.

Saskia B. Wortmann; Frédéric M. Vaz; Thatjana Gardeitchik; Lisenka E.L.M. Vissers; G. Herma Renkema; Janneke H M Schuurs-Hoeijmakers; Wim Kulik; Martin Lammens; Christin Christin; Leo A. J. Kluijtmans; Richard J. Rodenburg; Leo Nijtmans; Anne Grünewald; Christine Klein; Joachim M. Gerhold; Tamás Kozicz; Peter M. van Hasselt; Magdalena Harakalova; Wigard P. Kloosterman; Ivo Barić; Ewa Pronicka; Sema Kalkan Uçar; Karin Naess; Kapil K Singhal; Zita Krumina; Christian Gilissen; Hans van Bokhoven; Joris A. Veltman; Jan A.M. Smeitink; Dirk J. Lefeber

Using exome sequencing, we identify SERAC1 mutations as the cause of MEGDEL syndrome, a recessive disorder of dystonia and deafness with Leigh-like syndrome, impaired oxidative phosphorylation and 3-methylglutaconic aciduria. We localized SERAC1 at the interface between the mitochondria and the endoplasmic reticulum in the mitochondria-associated membrane fraction that is essential for phospholipid exchange. A phospholipid analysis in patient fibroblasts showed elevated concentrations of phosphatidylglycerol-34:1 (where the species nomenclature denotes the number of carbon atoms in the two acyl chains:number of double bonds in the two acyl groups) and decreased concentrations of phosphatidylglycerol-36:1 species, resulting in an altered cardiolipin subspecies composition. We also detected low concentrations of bis(monoacyl-glycerol)-phosphate, leading to the accumulation of free cholesterol, as shown by abnormal filipin staining. Complementation of patient fibroblasts with wild-type human SERAC1 by lentiviral infection led to a decrease and partial normalization of the mean ratio of phosphatidylglycerol-34:1 to phosphatidylglycerol-36:1. Our data identify SERAC1 as a key player in the phosphatidylglycerol remodeling that is essential for both mitochondrial function and intracellular cholesterol trafficking.


Nature Genetics | 2012

Dominant missense mutations in ABCC9 cause Cantú syndrome

Magdalena Harakalova; Jeske van Harssel; Paulien A. Terhal; Stef van Lieshout; Karen Duran; Ivo Renkens; David J. Amor; Louise C. Wilson; Edwin P. Kirk; Claire Turner; Debbie Shears; Sixto García-Miñaúr; Melissa Lees; Alison Ross; Hanka Venselaar; Gert Vriend; Hiroki Takanari; Martin B. Rook; Marcel A.G. van der Heyden; Folkert W. Asselbergs; Hans M Breur; Marielle Swinkels; Ingrid Scurr; Sarah F. Smithson; Nine V.A.M. Knoers; Jasper J. van der Smagt; Isaac J. Nijman; Wigard P. Kloosterman; Mieke M. van Haelst; Gijs van Haaften

Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (KATP) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the KATP channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.

Collaboration


Dive into the Wigard P. Kloosterman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald H.A. Plasterk

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Guryev

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Ewart de Bruijn

American Academy of Arts and Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge