Wiktoria Maria Suchorska
Poznan University of Medical Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wiktoria Maria Suchorska.
International Orthopaedics | 2015
Ewelina Augustyniak; Tomasz Trzeciak; Magdalena Richter; Jacek Kaczmarczyk; Wiktoria Maria Suchorska
PurposeThe use of stem cells in regenerative medicine offers hope to treat numerous orthopaedic disorders, including articular cartilage defects. Although much research has been carried out on chondrogenesis, this complicated process is still not well understood and much more research is needed. The present review provides an overview of the stages of chondrogenesis and describes the effects of various growth factors, which act during the multiple steps involved in stem cell-directed differentiation towards chondrocytes.MethodsThe current literature on stem cell-directed chondrogenesis, in particular the role of members of the transforming growth factor-β (TGF-β) superfamily—TGF-βs, bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs)—is reviewed and discussed.ResultsNumerous studies have reported the chondrogenic potential of both adult- and embryonic-like stem cells and the role of growth factors in programming differentiation of these cells towards chondrocytes. Mesenchymal stem cells (MSCs) are adult multipotent stem cells, whereas induced pluripotent stem cells (iPSC) are reprogrammed pluripotent cells. Although better understanding of the processes involved in the development of cartilage tissues is necessary, both cell types may be of value in the clinical treatment of cartilage injuries or osteoarthritic cartilage lesions.ConclusionsMSCs and iPSCs both present unique characteristics. However, at present, it is still unclear which cell type is most suitable in the treatment of cartilage injuries.
Oncology Reports | 2016
Wiktoria Maria Suchorska; Michał Stefan Lach
Tumor cells have developed various mechanisms in defense against applied treatment, which prevent their total elimination from an organism. One of the underestimated mechanisms of defense is secretion of highly specialized double-membrane structures called exosomes. They play a crucial role in the control of the local microenvironment and intracellular communication. It has been shown that the exosomes can be carriers of various proteins, lipids, miRNAs and mRNAs. There are extensive data concerning the influence and participation by exosomes in metastasis and cancer progression. It has been demonstrated that exosomes are involved in multidrug resistance mechanisms, radiation-induced bystander effect and epithelial-mesenchymal transition. Furthermore, exosomes are able to form a premetastatic niche and enable the escape of cancer cells from recognition by host immune cells. Moreover, exosomes are responsible for the formation of vessels. This indicates the significance of secreted extracellular vesicles in the development and prognosis of cancer. The aim of the present review is to briefly describe the role of exosomes in tumor biology.
Journal of Tissue Engineering | 2014
Michał Stefan Lach; Tomasz Trzeciak; Magdalena Richter; Jarosław Pawlicz; Wiktoria Maria Suchorska
In recent years, increases in the number of articular cartilage injuries caused by environmental factors or pathological conditions have led to a notable rise in the incidence of premature osteoarthritis. Osteoarthritis, considered a disease of civilization, is the leading cause of disability. At present, standard methods for treating damaged articular cartilage, including autologous chondrocyte implantation or microfracture, are short-term solutions with important side effects. Emerging treatments include the use of induced pluripotent stem cells, a technique that could provide a new tool for treatment of joint damage. However, research in this area is still early, and no optimal protocol for transforming induced pluripotent stem cells into chondrocytes has yet been established. Developments in our understanding of cartilage developmental biology, together with the use of modern technologies in the field of tissue engineering, provide an opportunity to create a complete functional model of articular cartilage.
Molecular Biotechnology | 2015
Wojciech Barczak; Wiktoria Maria Suchorska; Błażej Rubiś; Katarzyna Kulcenty
Lentiviral vectors are efficient vehicles for stable gene transfer in both dividing and non-dividing cells. This feature among others makes lentiviral vectors a powerful tool in molecular research. However, the use of lentiviruses in research studies and clinical trials requires a precise and validated titration method. In this study, we describe a qPCR-based approach for estimation of lentiviral vector titer (pLV-THM-GFP). The use of WPRE (Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element) and albumin genes as templates for an SYBR green-based real-time qPCR method allows for a rapid, sensitive, reproducible, and accurate assessment of lentiviral copy number at an integrated lentiviral DNA level. Furthermore, this optimization enables measurement of lentiviral concentration even in very poor quality and small quantity material. Consequently, this approach provides researchers with a tool to perform low-cost assessment with highly repeatable results.
Oncology Letters | 2016
Karolina Zaleska; Wiktoria Maria Suchorska; Anna Przybyła; Dawid Murawa
The wound healing process after surgery alters the area surrounding the original tumor and around the scar, and the modified microenvironment is more favorable for tumor recurrence. Intraoperative radiotherapy (IORT) is one of the more novel strategies in breast cancer (BC) treatment. Irradiation during surgery has effects on the tumor microenvironment, abrogating the proliferative cascade induced by surgical wound healing. The aim of the present study was to determine the effect of surgical wound fluids from IOERT treatment (RT-WF) compared with wound fluids from conservative-breast surgery only (WF) on the cancer stem cell phenotype in a panel of BC cell lines. Post-operative wound fluids were derived from patients with BC who underwent a tumor resection (quadrantectomy) plus intraoperative electron radiotherapy using a single dose of ≤10 Gy on the tumor bed and surrounding tissues, or from those who underwent a tumor resection without IOERT. Cell lines were incubated with 10% wound fluids, and after 4 days, the cluster of differentiation (CD)44+/CD24−/low phenotype and aldehyde dehydrogenase 1 (ALDH1) activity were determined by flow cytometry. The two types of fluid each affected the CD44+/CD24−/low phenotype. The results varied markedly between each cell line, even for the same histological subtypes. RT-WF decreased the CD44+/CD24−/low populations in the basal-like BT-549 and MDA-MB-468 cell lines, whereas in the luminal type MCF7 cell line, the two fluids inhibited these populations. The HER-OE subtypes harbored a minimal CD44+/CD24−/low population, but the growth of SK-BR-3 was stimulated by the two post-operative fluids. WF exhibited a stronger effect on ALDH1 activity compared with RT-WF. The stimulatory effect was dependent on the histological subtype of the cell line and the strongest dependence was observed in luminal subtypes characterized by low dehydrogenase activity in the control group. The present results enable a better understanding of the mechanism of recurrence and metastases following BC surgery. With respect to histological phenotype, its effect on tumor progression, either local or systemic, strongly suggests the requirement for further research and clinical validation.
Experimental and Therapeutic Medicine | 2016
Wiktoria Maria Suchorska; Ewelina Augustyniak; Magdalena Łukjanow
Regenerative medicine is a rapidly growing field that holds promise for the treatment of many currently unresponsive diseases. Stem cells (SCs) are undifferentiated cells with long-term self-renewal potential and the capacity to develop into specialized cells. SC-based therapies constitute a novel and promising concept in regenerative medicine. Radiotherapy is the most frequently used method in the adjuvant treatment of tumorous alterations. In the future, the usage of SCs in regenerative medicine will be affected by their regular and inevitable exposure to ionizing radiation (IR). This phenomenon will be observed during treatment as well as diagnosis. The issue of the genetic stability of SCs and cells differentiated from SCs is crucial in the context of the application of these cells in clinical practice. This review examines current knowledge concerning the DNA repair mechanisms (base excision repair, nucleotide excision repair, mismatch repair, homologous recombination and non-homologous end-joining) of SCs in response to the harmful effects of genotoxic agents such as IR and chemotherapeutics.
Annals of Biomedical Engineering | 2016
Wiktoria Maria Suchorska; Michał Stefan Lach; Magdalena Richter; Jacek Kaczmarczyk; Tomasz Trzeciak
To improve the recovery of damaged cartilage tissue, pluripotent stem cell-based therapies are being intensively explored. A number of techniques exist that enable monitoring of stem cell differentiation, including immunofluorescence staining. This simple and fast method enables changes to be observed during the differentiation process. Here, two protocols for the differentiation of human embryonic stem cells into chondrocytes were used (monolayer cell culture and embryoid body formation). Cells were labeled for markers expressed during the differentiation process at different time points (pluripotent: NANOG, SOX2, OCT3/4, E-cadherin; prochondrogenic: SOX6, SOX9, Collagen type II; extracellular matrix components: chondroitin sulfate, heparan sulfate; beta-catenin, CXCR4, and Brachyury). Comparison of the signal intensity of differentiated cells to control cell populations (articular cartilage chondrocytes and human embryonic stem cells) showed decreased signal intensities of pluripotent markers, E-cadherin and beta-catenin. Increased signal intensities of prochondrogenic markers and extracellular matrix components were observed. The changes during chondrogenic differentiation monitored by evaluation of pluripotent and chondrogenic markers signal intensity were described. The changes were similar to several studies over chondrogenesis. These results were confirmed by semi-quantitative analysis of IF signals. In this research we indicate a bioimaging as a useful tool to monitor and semi-quantify the IF pictures during the differentiation of hES into chondrocyte-like.
Stem Cell Research | 2017
Michał Stefan Lach; Joanna Wróblewska; Ewelina Augustyniak; Katarzyna Kulcenty; Wiktoria Maria Suchorska
The primary human dermal fibroblasts (PHDFs) from breast cancer patient were obtained to generate the human induced pluripotent stem cell line GPCCi001-A via lentiviral transfection. Thus, a modified EF1a-hSTEMCCA-loxP with tetO operator which regulates transgene expression was used. This method takes advantage of epigenetic regulation of transcription and allows for stable silencing of the reprogramming factors in obtained hiPS cells. To increase the potential utility of hiPSCs for clinical applications, they were adapted to feeder- and xeno-free conditions. The pluripotency of GPCCi001-A cell line and ability to differentiate into three germ layers was confirmed.
Journal of Cell Science and Therapy | 2014
Tomasz Trzeciak; Ewelina Augustyniak; Magdalena Richter; Jacek Kaczmarczyk; Wiktoria Maria Suchorska
The application of stem cells in regenerative medicine has recently become a rapidly growing field, holding promise for combating a number of orthopedic disorders including osteodegenerative ones (osteoporosis and osteoarthritis). Although the differentiation of stem cells into chondrocytes is now intensively investigated on a laboratory scale, implementing the laboratory protocols in clinical practice requires a scale-up culture. In order to apply this technique many aspects of stem cell bioprocessing such as optimal culture conditions for anchoragedependent or anchorage-independent cells and the type of culture must be taken into account. The presence of microcarriers and/or scaffolds for adherent cells is essential, since they provide a three-dimensional microenvironment indispensable for cell growth. For treatment of osteoarthritis, induced pluripotent stem cells and mesenchymal stem cells seem to be the best choice. Although, the scale-up culture using stem cells has been intensively investigated on a laboratory scale, the scale-up culture for clinical application still requires further technical improvements.In this review stem cell bioprocessing including the use of biomaterials, bioreactors, and factors affecting this process, as well as scale-up culture of induced Pluripotent and mesenchymal stem cells were presented and discussed.
Medical Oncology | 2017
Wiktoria Blaszczak; Wojciech Barczak; Anna Wegner; Wojciech Golusiński; Wiktoria Maria Suchorska
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of malignant tumours that affects over 500,000 patients per year. Treatment failure is generally due to the heterogeneity of these tumours and to the serious adverse effects associated with treatment. Immunological system impairment, which is common in HNSCC, further contributes to treatment failure by mediating tumour escape mechanisms. To date, the only clinically approved targeted therapy agent is cetuximab, a monoclonal antibody (mAb) that binds to, and inhibits, epidermal growth factor receptor, which is widely overexpressed in HNSCC. Cetuximab has been proven to induce antibody-dependent cellular cytotoxicity, further magnifying its therapeutic effect. DNA sequencing of HNSCC cells has identified the presence of mutated genes, thus making their protein products potential targets for therapeutic inhibition. Immune mechanisms have been found to have a significant impact on carcinogenesis, thus providing the rationale to support efforts to identify anticancer compounds with immunomodulatory properties. In the context of the rapid development of novel targeted agents, the aim of the present paper is to review our current understanding of HNSCC and to review the novel anticancer agents (mAbs and TKIs) introduced in recent years, including an assessment of their efficacy and mechanisms of action.