Wilberd van der Kallen
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wilberd van der Kallen.
Journal of Pure and Applied Algebra | 1989
Wilberd van der Kallen
Abstract An algebraic version of cohomotopy groups is developed. Further the stabilization problem for the K 1 of Bass is studied for matrices that are much smaller than those treated classically.
Journal of Algebra | 1983
Wilberd van der Kallen
Let R be a commutative noetherian d-dimensional ring. Recall that for n > d + 2 the group E,(R) (the subgroup of GL,(R) generated by elementary matrices) acts transitively on Urn,,(R), the set of unimodular rows of length .YI over R. If d > 2, we will describe an abelian group structure on Urxd+ ,(R)/ Ed+,(R). This group structure will be closely related with the higher Mennicke symbols of Suslin. In fact this article is mainly an elaboration of a theme in Suslin ( 141 (in particular [ 14, Sect. 11 j, Recall that for d = I, b] the Bass-Kubota theorem there is a bijection MS,(R) ++ Umz(R)/SLz(R) fl E(R), where MSz(R) denotes the target group of the universal Mennicke symbol, as in Suslin [ 13, Sect. 51. We will see that more generally hfS,+ ,(R) * um,, , (R)/SL,+ ,(R) f’E(R) if d is odd. Now let d = 2. Then, by a theorem of Vaserstein, Um,(R)/E,(R) . IS in bijective correspondence with a certain Witt group [ 17, Cor. 7.41. In particular Um,(R)/E,(R) gets the structure of an abelian group. We will derive from this (inductively) the structure of an abelian group on Urn,, ,(R)/E,+ ,(R) for d > 3. (It would be desirable to have an interpretation of these abelian groups in terms of Witt groups or of similar Grothendieck groups of categories.) As an intriguing by-product we get an abelian group structure on the set of isomorphism classes of oriented stably free rank d projective modules. (If d is odd one does not need the orientations. See 4.8.) We will borrow heavily from the work of Suslin and Vaserstein. For the convenience of the reader we have included a proof of Vaserstein’s prestabilization theorem for K, , making no restriction on the presence of zero-divisors. (In Vaserstein’s original proof such restrictions were made, but he has long since been able to remove them. Because of the crucial role his theorem plays in connecting higher Mennicke symbols with ordinary K363 OOZl-3693183
Indagationes Mathematicae | 1998
J. J. Duistermaat; Wilberd van der Kallen
3.00
Mathematische Zeitschrift | 1986
Wilberd van der Kallen
Abstract We classify the complex Laurent polynomials with the property that their powers have no constant term. The result confirms a conjecture of Mathieu for the case of tori. (A different case would imply Kellers Jacobian Conjecture.)
Experimental Mathematics | 1997
Bert van Geemen; Wilberd van der Kallen; Jakob Top; Alain Verberkmoes
DigiZeitschriften e.V. gewährt ein nicht exklusives, nicht übertragbares, persönliches und beschränktes Recht auf Nutzung dieses Dokuments. Dieses Dokument ist ausschließlich für den persönlichen, nicht kommerziellen Gebrauch bestimmt. Das Copyright bleibt bei den Herausgebern oder sonstigen Rechteinhabern. Als Nutzer sind Sie sind nicht dazu berechtigt, eine Lizenz zu übertragen, zu transferieren oder an Dritte weiter zu geben. Die Nutzung stellt keine Übertragung des Eigentumsrechts an diesem Dokument dar und gilt vorbehaltlich der folgenden Einschränkungen: Sie müssen auf sämtlichen Kopien dieses Dokuments alle Urheberrechtshinweise und sonstigen Hinweise auf gesetzlichen Schutz beibehalten; und Sie dürfen dieses Dokument nicht in irgend einer Weise abändern, noch dürfen Sie dieses Dokument für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder anderweitig nutzen; es sei denn, es liegt Ihnen eine schriftliche Genehmigung von DigiZeitschriften e.V. und vom Herausgeber oder sonstigen Rechteinhaber vor. Mit dem Gebrauch von DigiZeitschriften e.V. und der Verwendung dieses Dokuments erkennen Sie die Nutzungsbedingungen an.
Inventiones Mathematicae | 1992
Vikram B. Mehta; Wilberd van der Kallen
We list here Hecke eigenvalues of several automorphic forms for congruence subgroups of Sl(3; Z). To compute such tables, we describe an algorithm that combines techniques developed by Ash, Grayson and Green with the Lenstra–Lenstra–Lovasz algorithm. With our implementation of this new algorithm we were able to handle much larger levels than those treated by Ash, Grayson and Green and by Top and van Geemen in previous work. Comparing our tables with results from computations of Galois representations, we find some new numerical evidence for the conjectured relation between modular forms and Galois representations.
Journal of Symbolic Computation | 2000
Wilberd van der Kallen
This paper is about sheaf cohomology for varieties (schemes) in characteristic
Mathematische Zeitschrift | 1977
Wilberd van der Kallen; Michael R. Stein
p>0
Acta Applicandae Mathematicae | 2006
Richard Cushman; Wilberd van der Kallen
. We assume the presence of a Frobenius splitting. (See V.B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Annals of Math. 122 (1985), 27--40). The main result is that a non-zero higher direct image under a proper map of the ideal sheaf of a compatibly Frobenius split subvariety can not have a support whose inverse image is contained in that subvariety. Earlier vanishing theorems for Frobenius split varieties were based on direct limits and Serres vanishing theorem, but our theorem is based on inverse limits and Grothendiecks theorem on formal functions. The result implies a Grauert--Riemenschneider type theorem.
Mathematische Zeitschrift | 1993
Wilberd van der Kallen
We consider the complexity of the LLL HNF algorithm Havas et al.(1998, Algorithm 4). This algorithm takes as input an m by n matrix G of integers and produces as output a matrixb?GLm(Z) so thatA=bG is in Hermite normal form (upside down). The analysis is similar to that of an extended LLL algorithm as given in van der Kallen (1998).