Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wilbert Sybesma is active.

Publication


Featured researches published by Wilbert Sybesma.


Applied and Environmental Microbiology | 2003

Effects of Cultivation Conditions on Folate Production by Lactic Acid Bacteria

Wilbert Sybesma; Marjo Starrenburg; Linda Tijsseling; Marcel H. N. Hoefnagel; Jeroen Hugenholtz

ABSTRACT A variety of lactic acid bacteria were screened for their ability to produce folate intracellularly and/or extracellularly. Lactococcus lactis, Streptococcus thermophilus, and Leuconostoc spp. all produced folate, while most Lactobacillus spp., with the exception of Lactobacillus plantarum, were not able to produce folate. Folate production was further investigated in L. lactis as a model organism for metabolic engineering and in S. thermophilus for direct translation to (dairy) applications. For both these two lactic acid bacteria, an inverse relationship was observed between growth rate and folate production. When cultures were grown at inhibitory concentrations of antibiotics or salt or when the bacteria were subjected to low growth rates in chemostat cultures, folate levels in the cultures were increased relative to cell mass and (lactic) acid production. S. thermophilus excreted more folate than L. lactis, presumably as a result of differences in the number of glutamyl residues of the folate produced. In S. thermophilus 5,10-methenyl and 5-formyl tetrahydrofolate were detected as the major folate derivatives, both containing three glutamyl residues, while in L. lactis 5,10-methenyl and 10-formyl tetrahydrofolate were found, both with either four, five, or six glutamyl residues. Excretion of folate was stimulated at lower pH in S. thermophilus, but pH had no effect on folate excretion by L. lactis. Finally, several environmental parameters that influence folate production in these lactic acid bacteria were observed; high external pH increased folate production and the addition of p-aminobenzoic acid stimulated folate production, while high tyrosine concentrations led to decreased folate biosynthesis.


Applied and Environmental Microbiology | 2003

Increased Production of Folate by Metabolic Engineering of Lactococcus lactis

Wilbert Sybesma; Marjo Starrenburg; Michiel Kleerebezem; Igor Mierau; Willem M. de Vos; Jeroen Hugenholtz

ABSTRACT The dairy starter bacterium Lactococcus lactis is able to synthesize folate and accumulates large amounts of folate, predominantly in the polyglutamyl form. Only small amounts of the produced folate are released in the extracellular medium. Five genes involved in folate biosynthesis were identified in a folate gene cluster in L. lactis MG1363: folA, folB, folKE, folP, and folC. The gene folKE encodes the biprotein 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase and GTP cyclohydrolase I. The overexpression of folKE in L. lactis was found to increase the extracellular folate production almost 10-fold, while the total folate production increased almost 3-fold. The controlled combined overexpression of folKE and folC, encoding polyglutamyl folate synthetase, increased the retention of folate in the cell. The cloning and overexpression of folA, encoding dihydrofolate reductase, decreased the folate production twofold, suggesting a feedback inhibition of reduced folates on folate biosynthesis.


Applied and Environmental Microbiology | 2004

Riboflavin Production in Lactococcus lactis: Potential for In Situ Production of Vitamin-Enriched Foods

Catherine M. Burgess; Mary O'Connell-Motherway; Wilbert Sybesma; Jeroen Hugenholtz; Douwe van Sinderen

ABSTRACT This study describes the genetic analysis of the riboflavin (vitamin B2) biosynthetic (rib) operon in the lactic acid bacterium Lactococcus lactis subsp. cremoris strain NZ9000. Functional analysis of the genes of the L. lactis rib operon was performed by using complementation studies, as well as by deletion analysis. In addition, gene-specific genetic engineering was used to examine which genes of the rib operon need to be overexpressed in order to effect riboflavin overproduction. Transcriptional regulation of the L. lactis riboflavin biosynthetic process was investigated by using Northern hybridization and primer extension, as well as the analysis of roseoflavin-induced riboflavin-overproducing L. lactis isolates. The latter analysis revealed the presence of both nucleotide replacements and deletions in the regulatory region of the rib operon. The results presented here are an important step toward the development of fermented foods containing increased levels of riboflavin, produced in situ, thus negating the need for vitamin fortification.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2002

Metabolic engineering of lactic acid bacteria for the production of nutraceuticals

Jeroen Hugenholtz; Wilbert Sybesma; Masja N. Nierop Groot; Wouter Wisselink; Vic tor Ladero; Kay Burgess; Douwe van Sinderen; Jean-Christophe Piard; Gerrit Eggink; Eddy J. Smid; Graciela Savoy; Fernando Sesma; Tanja Jansen; Pascal Hols; Michiel Kleerebezem

Lactic acid bacteria display a relatively simple and well-described metabolism where the sugar source is converted mainly to lactic acid. Here we will shortly describe metabolic engineering strategies on the level of sugar metabolism, that lead to either the efficient re-routing of the lactococcal sugar metabolism to nutritional end-products other than lactic acid such as L-alanine, several low-calorie sugars and oligosaccharides or to enhancement of sugar metabolism for complete removal of (undesirable) sugars from food materials. Moreover, we will review current metabolic engineering approaches that aim at increasing the flux through complex biosynthetic pathways, leading to the production of the B-vitamins folate and riboflavin. An overview of these metabolic engineering activities can be found on the website of the Nutra Cells 5th Framework EU-project (www.nutracells.com). Finally, the impact of the developments in the area of genomics and corresponding high-throughput technologies on nutraceutical production will be discussed.


Applied and Environmental Microbiology | 2004

Transformation of Folate-Consuming Lactobacillus gasseri into a Folate Producer

Arno Wegkamp; Marjo Starrenburg; Willem M. de Vos; Jeroen Hugenholtz; Wilbert Sybesma

ABSTRACT Five genes essential for folate biosynthesis in Lactococcus lactis were cloned on a broad-host-range lactococcal vector and were transferred to the folate auxotroph Lactobacillus gasseri. As a result L. gasseri changed from a folate consumer to a folate producer. This principle can be used to increase folate levels in many fermented food products.


Applied and Environmental Microbiology | 2011

Modification of the Technical Properties of Lactobacillus johnsonii NCC 533 by Supplementing the Growth Medium with Unsaturated Fatty Acids

J. A. Muller; R.P. Ross; Wilbert Sybesma; Gerald F. Fitzgerald; Catherine Stanton

ABSTRACT The aim of this study was to investigate the influence of supplementing growth medium with unsaturated fatty acids on the technical properties of the probiotic strain Lactobacillus johnsonii NCC 533, such as heat and acid tolerance, and inhibition of Salmonella enterica serovar Typhimurium infection. Our results showed that the membrane composition and morphology of L. johnsonii NCC 533 were significantly changed by supplementing a minimal Lactobacillus medium with oleic, linoleic, and linolenic acids. The ratio of saturated to unsaturated plus cyclic fatty acids in the bacterial membrane decreased by almost 2-fold when minimal medium was supplemented with unsaturated fatty acids (10 μg/ml). The subsequent acid and heat tolerance of L. johnsonii decreased by 6- and 20-fold when the strain was grown in the presence of linoleic and linolenic acids, respectively, compared with growth in oleic acid (all at 10 μg/ml). Following acid exposure, significantly higher (P < 0.05) oleic acid content was detected in the membrane when growth medium was supplemented with linoleic or linolenic acid, indicating that saturation of the membrane fatty acids occurred during acid stress. Cell integrity was determined in real time during stressed conditions using a fluorescent viability kit in combination with flow cytometric analysis. Following heat shock (at 62.5°C for 5 min), L. johnsonii was unable to form colonies; however, 60% of the bacteria showed no cell integrity loss, which could indicate that the elevated heat inactivated vital processes within the cell, rendering it incapable of replication. Furthermore, L. johnsonii grown in fatty acid-enriched minimal medium had different adhesion properties and caused a 2-fold decrease in S. enterica serovar Typhimurium UK1-lux invasion of HT-29 epithelial cells compared with bacteria grown in minimal medium alone. This could be related to changes in the hydrophobicity and fluidity of the membrane. Our study shows that technical properties underlying probiotic survivability can be affected by nutrient composition of the growth medium.


Electronic Journal of Biotechnology | 2006

Safe use of genetically modified lactic acid bacteria in food. Bridging the gap between consumers, green groups, and industry

Wilbert Sybesma; Jeroen Hugenholtz; Willem M. de Vos; Eddy J. Smid

Within the European Union (EU), the use of genetically modified organisms (GMOs) in food production is not widely applied and accepted. In contrast to the United States of America, the current EU legislation limits the introduction of functional foods derived from GMOs that may bring a clear benefit to the consumer. Genetically modified lactic acid bacteria (GM-LAB) can be considered as a different class of GMOs, and the European Union is preparing regulations for the risk assessment of genetically modified microorganisms. Since these procedures are not yet implemented, the current risk assessment procedure is shared for GMOs derived from micro organisms, plants, or animals. At present, the use of organisms in food production that have uncontrolled genetic alterations made through random mutagenesis, is permitted, while similar applications with organisms that have controlled genetic alterations are not allowed. The current paper reviews the opportunities that genetically modified lactic acid bacteria may offer the food industry and the consumer. An objective risk profile is described for the use of GM-LAB in food production. To enhance the introduction of functional foods with proven health claims it is proposed to adapt the current safety assessment procedures for (GM)-LAB and suggestions are made for the related cost accountability. A qualified presumption of safety as proposed by SANCO (EU SANCO 2003), based on taxonomy and on the history of safe use of LAB applied in food, could in the near future be applied to any kind of LAB or GM-LAB provided that a series of modern profiling methods are used to verify the absence of unintended effects of altered LAB that may cause harm to the health of the consumer.


Applied Microbiology and Biotechnology | 2005

Using Lactococcus lactis for glutathione overproduction

Yin Li; Jeroen Hugenholtz; Wilbert Sybesma; Tjakko Abee; Douwe Molenaar

Glutathione and γ-glutamylcysteine were produced in Lactococcus lactis using a controlled expression system and the genes gshA and gshB from Escherichia coli encoding the enzymes γ-glutamylcysteine synthetase and glutathione synthetase. High levels of γ-glutamylcysteine were found in strains growing on chemically defined medium and expressing either gshA alone or both gshA and gshB. As anticipated, glutathione was found in a strain expressing gshA and gshB. The level of glutathione production could be increased by addition of the precursor amino acid cysteine to the medium. The addition of cysteine led to an increased activity of glutathione synthetase, which is remarkable because the amino acid is not a substrate of this enzyme. The final intracellular glutathione concentration attained was 358 nmol mg−1 protein, which is the highest concentration reported for a bacterium, demonstrating the suitability of engineered L. lactis for fine-chemical production and as a model for studies of the impact of glutathione on flavour formation and other properties of food.


Applied and Environmental Microbiology | 2003

Controlled Modulation of Folate Polyglutamyl Tail Length by Metabolic Engineering of Lactococcus lactis

Wilbert Sybesma; Erwin van den Born; Marjo Starrenburg; Igor Mierau; Michiel Kleerebezem; Willem M. de Vos; Jeroen Hugenholtz

ABSTRACT The dairy starter bacterium Lactococcus lactis is able to synthesize folate and accumulates >90% of the produced folate intracellularly, predominantly in the polyglutamyl form. Approximately 10% of the produced folate is released into the environment. Overexpression of folC in L. lactis led to an increase in the length of the polyglutamyl tail from the predominant 4, 5, and 6 glutamate residues in wild-type cells to a maximum of 12 glutamate residues in the folate synthetase overproducer and resulted in a complete retention of folate in the cells. Overexpression of folKE, encoding the bifunctional protein 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase and GTP-cyclohydrolase I, resulted in reduction of the average polyglutamyl tail length, leading to enhanced excretion of folate. By simultaneous overexpression of folKE and folC, encoding the enzyme folate synthetase or polyglutamyl folate synthetase, the average polyglutamyl tail length was increased, again resulting in normal wild-type distribution of folate. The production of bioavailable monoglutamyl folate and almost complete release of folate from the bacterium was achieved by expressing the gene for γ-glutamyl hydrolase from human or rat origin. These engineering studies clearly establish the role of the polyglutamyl tail length in intracellular retention of the folate produced. Also, the potential application of engineered food microbes producing folates with different tail lengths is discussed.


Applied and Environmental Microbiology | 2013

Genome instability in Lactobacillus rhamnosus GG.

Wilbert Sybesma; Douwe Molenaar; Wilfred van IJcken; Koen Venema; Remco Kort

ABSTRACT We describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing from the genomic islands LGGISL1,2. The deleted DNA segments consist of 34 genes in one isolate and 84 genes in the other and are flanked by identical insertion elements. Among the missing genes are the spaCBA genes, which encode pilin subunits involved in adhesion to mucus and persistence of the strains in the human intestinal tract. Subsequent quantitative PCR analyses of six commercial probiotic products confirmed that two more products contain a heterogeneous population of L. rhamnosus GG variants, including genotypes with or without spaC. These results underline the relevance for quality assurance and control measures targeting genome stability in probiotic strains and justify research assessing the effect of genetic rearrangements in probiotics on the outcome of in vitro and in vivo efficacy studies.

Collaboration


Dive into the Wilbert Sybesma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Remco Kort

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Michiel Kleerebezem

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Marjo Starrenburg

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Willem M. de Vos

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Igor Mierau

University of Groningen

View shared research outputs
Top Co-Authors

Avatar

Gregor Reid

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Daniel De Vos

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Jean-Paul Pirnay

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Aidan Coffey

Cork Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge