Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wilco de Jager is active.

Publication


Featured researches published by Wilco de Jager.


Clinical and Vaccine Immunology | 2003

Simultaneous Detection of 15 Human Cytokines in a Single Sample of Stimulated Peripheral Blood Mononuclear Cells

Wilco de Jager; Henk te Velthuis; Berent J. Prakken; Wietse Kuis; Ger T. Rijkers

ABSTRACT Cytokines secreted by cells of the immune system can alter the behavior and properties of immune or other cells. At a site of inflammation, sets of cytokines interact with immune cells, and their combined effect is often more important than the function of one isolated component. Conventional techniques, such as enzyme-linked immunosorbent assays, generally require large quantities of cells to characterize a complete cytokine profile of activated lymphocytes. The Bio-Plex system from Bio-Rad Laboratories combines the principle of a sandwich immunoassay with the Luminex fluorescent-bead-based technology. We developed a multiplex cytokine assay to detect different cytokines simultaneously in culture supernatant of human peripheral blood mononuclear cells stimulated with antigen and with mitogen. Fifteen human cytokines (interleukin 1α [IL-1α], IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-15, IL-17, IL-18, gamma interferon, and tumor necrosis factor alpha) were validated with a panel of healthy individuals, rheumatoid arthritis patients, and juvenile idiopathic arthritis patients. Comparing the multiplex assay with a regular enzyme-linked immunosorbent assay technique with this donor panel resulted in correlation coefficients for all cytokines ranging from 0.75 to 0.99. Intra-assay variance proved to be less then 10%, whereas interassay variability ranged between 10 and 22%. This multiplex system proved to be a powerful tool in the quantitation of cytokines. It will provide a more complete picture in differences between activated lymphocyte cytokine profiles from healthy individuals and those from patients with chronic inflammatory diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment

Kiran Nistala; Stuart Adams; Helen Cambrook; Simona Ursu; Biagio Olivito; Wilco de Jager; Jamie G. Evans; Rolando Cimaz; Mona Bajaj-Elliott; Lucy R. Wedderburn

In several murine models of autoimmune arthritis, Th17 cells are the dominant initiators of inflammation. In human arthritis the majority of IL-17–secreting cells within the joint express a cytokine phenotype intermediate between Th17 and Th1. Here we show that Th17/1 cells from the joints of children with inflammatory arthritis express high levels of both Th17 and Th1 lineage-specific transcription factors, RORC2 and T-bet. Modeling the generation of Th17/1 in vitro, we show that Th17 cells “convert” to Th17/1 under conditions that mimic the disease site, namely low TGFβ and high IL-12 levels, whereas Th1 cells cannot convert to Th17. Th17/1 cells from the inflamed joint share T-cell receptor (TCR) clonality with Th17 cells, suggesting a shared clonal origin between Th17 and Th17/1 cells in arthritis. Using CD161, a lectin-like receptor that is a marker of human Th17, we show synovial Th17 and Th17/1 cells, and unexpectedly, a large proportion of Th1 cells express CD161. We provide evidence to support a Th17 origin for Th1 cells expressing CD161. In vitro, Th17 cells that convert to a Th1 phenotype maintain CD161 expression. In the joint CD161+ Th1 cells share features with Th17 cells, with shared TCR clonality, expression of RORC2 and CCR6 and response to IL-23, although they are IL-17 negative. We propose that the Th17 phenotype may be unstable and that Th17 cells may convert to Th17/1 and Th1 cells in human arthritis. Therefore therapies targeting the induction of Th17 cells could also attenuate Th17/1 and Th1 effector populations within the inflamed joint.


Annals of the Rheumatic Diseases | 2007

Blood and synovial fluid cytokine signatures in patients with juvenile idiopathic arthritis: a cross-sectional study

Wilco de Jager; Esther P A H Hoppenreijs; Nico Wulffraat; Lucy R. Wedderburn; Wietse Kuis; Berent J. Prakken

Background: Juvenile idiopathic arthritis (JIA) consists of a heterogeneous group of disorders with, for the most part, an unknown immunopathogenesis. Although onset and disease course differ, the subtypes of JIA share the occurrence of chronic inflammation of the joints, with infiltrations of immunocompetent cells that secrete inflammatory mediators. Objective: To identify a panel of cytokines specifically related to the inflammatory process in JIA. Methods: Using a new technology, the multiplex immunoassay, 30 cytokines were measured in plasma of 65 patients with JIA, of which 34 were paired with synovial fluid. These data were compared with plasma of 20 healthy controls and 9 patients with type I diabetes, a chronic inflammatory disease. Results: Patients with JIA had, irrespective of their subclassification, significantly higher levels of tumour necrosis factor α, macrophage inhibitory factor (MIF), CCL2, CCL3, CCL11, CCL22 and CXCL9 in plasma than controls. In paired plasma and synovial fluid samples of patients with JIA, significantly higher levels of interleukin (IL)6, IL15, CCL2, CCL3, CXCL8, CXCL9 and CXCL10 were present in synovial fluid. Cluster analysis in all patients with JIA revealed a predominant pro-inflammatory cytokine cluster during active disease and a regulatory/anti-inflammatory-related cytokine cluster during remission. Whether a discrimination profile of various cytokines could help in the determination of disease classification was tested. Conclusion: It is suggested that several cytokines (IL18, MIF, CCL2, CCL3, CCL11, CXCL9 and CXCL10) may correspond to the activation status during inflammation in JIA and could be instrumental in monitoring disease activity and outcomes of (new) immunotherapies.


BMC Immunology | 2009

Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays

Wilco de Jager; Katarzyna Bourcier; Ger T. Rijkers; Berent J. Prakken; Vicki Seyfert-Margolis

BackgroundGrowing knowledge about cellular interactions in the immune system, including the central role of cytokine networks, has lead to new treatments using monoclonal antibodies that block specific components of the immune system. Systemic cytokine concentrations can serve as surrogate outcome parameters of these interventions to study inflammatory pathways operative in patients in vivo. This is now possible due to novel technologies such as multiplex immunoassays (MIA) that allows detection of multiple cytokines in a single sample. However, apparently trivial underappreciated processes, (sample handling and storage, interference of endogenous plasma proteins) can greatly impact the reliability and reproducibility of cytokine detection.Therefore we set out to investigate several processes that might impact cytokine profiles such as blood collecting tubes, duration of storage, and number of freeze thawing cycles.ResultsSince under physiological conditions cytokine concentrations normally are low or undetectable we spiked cytokines in the various plasma and serum samples. Overall recoveries ranged between 80-120%. Long time storage showed cytokines are stable for a period up to 2 years of storage at -80°C. After 4 years several cytokines (IL-1α, IL-1β, IL-10, IL-15 and CXCL8) degraded up to 75% or less of baseline values. Furthermore we show that only 2 out of 15 cytokines remained stable after several freeze-thawing cycles. We also demonstrate implementation of an internal control for multiplex cytokine immunoassays.ConclusionAll together we show parameters which are essential for measurement of cytokines in the context of clinical trials.


The Lancet | 2005

Tolerogenic immune responses to novel T-cell epitopes from heat-shock protein 60 in juvenile idiopathic arthritis

Sylvia Kamphuis; Wietse Kuis; Wilco de Jager; Gijs Teklenburg; Margherita Massa; G. Gordon; Marjolein Boerhof; Ger T. Rijkers; Cuno S.P.M. Uiterwaal; Henny G. Otten; Alessandro Sette; Salvatore Albani; Berent J. Prakken

BACKGROUND Juvenile idiopathic arthritis is a heterogeneous autoimmune disease characterised by chronic inflammation of one or more joints. In patients with this disease, T-cell reactivity to autologous heat-shock protein 60 (HSP60) is associated with a favourable prognosis. We sought to identify HSP60 T-cell epitopes to find potential targets for HSP60 immunotherapy and to assess whether immune responses to these epitopes contribute to the distinct clinical outcome of this disease. METHODS We identified eight potential epitopes using a computer algorithm from both self and microbial HSP60 binding to many HLA-DR molecules. We analysed the pattern of T-cell responses induced by these HSP60 peptides in peripheral-blood mononuclear cells (PBMC) of 57 patients with juvenile idiopathic arthritis, 27 healthy controls, and 20 disease controls. We undertook in-vitro MHC binding studies with the identified peptides, and HLA class II typing of a subset of patients with juvenile idiopathic arthritis. FINDINGS Five of the eight peptides identified yielded proliferative T-cell responses in 50-70% of PBMC from patients with juvenile idiopathic arthritis irrespective of MHC genotype, but not in PBMC from healthy or disease controls. Although PBMC from both patients with juvenile idiopathic arthritis and healthy controls produced interferon gamma in response to these peptides, only PBMC from patients with the disease produced interleukin 10. INTERPRETATION The recorded T-cell-induction in juvenile idiopathic arthritis is tolerogenic. In patients with oligoarticular disease, the immune responses to the HSP60 epitopes identified could contribute to disease remission. RELEVANCE TO PRACTICE The broad recognition of these HSP60 epitopes in a population of patients with polymorphic MHC genotypes opens the way for HSP60-peptide immunotherapy, representing a novel treatment option to specifically modulate the immune system in patients with juvenile idiopathic arthritis.


Journal of Immunology | 2010

Histone Deacetylase Inhibitors Suppress Inflammatory Activation of Rheumatoid Arthritis Patient Synovial Macrophages and Tissue

Aleksander M. Grabiec; Sarah Krausz; Wilco de Jager; Tomasz Burakowski; Dion Groot; Marjolein E. Sanders; Berent J. Prakken; Wlodzimierz Maslinski; Eric Eldering; Paul P. Tak; Kris A. Reedquist

Macrophages contribute significantly to the pathology of many chronic inflammatory diseases, including rheumatoid arthritis (RA), asthma, and chronic obstructive pulmonary disease. Macrophage activation and survival are tightly regulated by reversible acetylation and deacetylation of histones, transcription factors, and structural proteins. Although histone deacetylase (HDAC) inhibitors (HDACis) demonstrate therapeutic effects in animal models of chronic inflammatory disease, depressed macrophage HDAC activity in patients with asthma, chronic obstructive pulmonary disease, or RA may contribute to inflammation in these diseases, potentially contraindicating the therapeutic administration of HDACis. In this study, we directly examined whether HDACis could influence the activation of macrophages derived from the inflamed joints of patients with RA. We found that inhibition of class I/II HDACs or class III sirtuin HDACs potently blocked the production of IL-6 and TNF-α by macrophages from healthy donors and patients with RA. Two HDACis, trichostatin A and nicotinamide, selectively induced macrophage apoptosis associated with specific downregulation of the antiapoptotic protein Bfl-1/A1, and inflammatory stimuli enhanced the sensitivity of macrophages to HDACi-induced apoptosis. Importantly, inflammatory and angiogenic cytokine production in intact RA synovial biopsy explants was also suppressed by HDACis. Our study identifies redundant, but essential, roles for class I/II and sirtuin HDACs in promoting inflammation, angiogenesis, and cell survival in RA.


Nature Immunology | 2013

A conserved human T cell population targets mycobacterial antigens presented by CD1b

Ildiko Van Rhijn; Anne Kasmar; Annemieke de Jong; Stephanie Gras; Mugdha Bhati; Marieke E. Doorenspleet; Niek de Vries; Dale I. Godfrey; John D. Altman; Wilco de Jager; Jamie Rossjohn; D. Branch Moody

Human T cell antigen receptors (TCRs) pair in millions of combinations to create complex and unique T cell repertoires for each person. Through the use of tetramers to analyze TCRs reactive to the antigen-presenting molecule CD1b, we detected T cells with highly stereotyped TCR α-chains present among genetically unrelated patients with tuberculosis. The germline-encoded, mycolyl lipid–reactive (GEM) TCRs had an α-chain bearing the variable (V) region TRAV1-2 rearranged to the joining (J) region TRAJ9 with few nontemplated (N)-region additions. Analysis of TCRs by high-throughput sequencing, binding and crystallography showed linkage of TCRα sequence motifs to high-affinity recognition of antigen. Thus, the CD1-reactive TCR repertoire is composed of at least two compartments: high-affinity GEM TCRs, and more-diverse TCRs with low affinity for CD1b-lipid complexes. We found high interdonor conservation of TCRs that probably resulted from selection by a nonpolymorphic antigen-presenting molecule and an immunodominant antigen.


Blood | 2011

Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells

Ellen J. Wehrens; Gerdien Mijnheer; Chantal L Duurland; Mark Klein; Jenny Meerding; Jorg van Loosdregt; Wilco de Jager; Birgit Sawitzki; Paul J. Coffer; Bas Vastert; Berent J. Prakken; Femke van Wijk

During the last decade research has focused on the application of FOXP3(+) regulatory T cells (Tregs) in the treatment of autoimmune disease. However, thorough functional characterization of these cells in patients with chronic autoimmune disease, especially at the site of inflammation, is still missing. Here we studied Treg function in patients with juvenile idiopathic arthritis (JIA) and observed that Tregs from the peripheral blood as well as the inflamed joints are fully functional. Nevertheless, Treg-mediated suppression of cell proliferation and cytokine production by effector cells from the site of inflammation was severely impaired, because of resistance to suppression. This resistance to suppression was not caused by a memory phenotype of effector T cells or activation status of antigen presenting cells. Instead, activation of protein kinase B (PKB)/c-akt was enhanced in inflammatory effector cells, at least partially in response to TNFα and IL-6, and inhibition of this kinase restored responsiveness to suppression. We are the first to show that PKB/c-akt hyperactivation causes resistance of effector cells to suppression in human autoimmune disease. Furthermore, these findings suggest that for a Treg enhancing strategy to be successful in the treatment of autoimmune inflammation, resistance because of PKB/c-akt hyperactivation should be targeted as well.


Cellular and Molecular Life Sciences | 2012

Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response

Anne A. Kan; Susan van Erp; Alwin A.H.A. Derijck; Marina de Wit; Ellen V. S. Hessel; Eoghan O’Duibhir; Wilco de Jager; Peter C. van Rijen; Peter H. Gosselaar; Pierre N. E. De Graan; R. Jeroen Pasterkamp

Mesial temporal lobe epilepsy (mTLE) is a chronic neurological disorder characterized by recurrent seizures. The pathogenic mechanisms underlying mTLE may involve defects in the post-transcriptional regulation of gene expression. MicroRNAs (miRNAs) are non-coding RNAs that control the expression of genes at the post-transcriptional level. Here, we performed a genome-wide miRNA profiling study to examine whether miRNA-mediated mechanisms are affected in human mTLE. miRNA profiles of the hippocampus of autopsy control patients and two mTLE patient groups were compared. This revealed segregated miRNA signatures for the three different patient groups and 165 miRNAs with up- or down-regulated expression in mTLE. miRNA in situ hybridization detected cell type-specific changes in miRNA expression and an abnormal nuclear localization of select miRNAs in neurons and glial cells of mTLE patients. Of several cellular processes implicated in mTLE, the immune response was most prominently targeted by deregulated miRNAs. Enhanced expression of inflammatory mediators was paralleled by a reduction in miRNAs that were found to target the 3′-untranslated regions of these genes in reporter assays. miR-221 and miR-222 were shown to regulate endogenous ICAM1 expression and were selectively co-expressed with ICAM1 in astrocytes in mTLE patients. Our findings suggest that miRNA changes in mTLE affect the expression of immunomodulatory proteins thereby further facilitating the immune response. This mechanism may have broad implications given the central role of astrocytes and the immune system in human neurological disease. Overall, this work extends the current concepts of human mTLE pathogenesis to the level of miRNA-mediated gene regulation.


Arthritis & Rheumatism | 2009

Defective phosphorylation of interleukin-18 receptor beta causes impaired natural killer cell function in systemic-onset juvenile idiopathic arthritis.

Wilco de Jager; Sebastiaan J. Vastert; Jeffrey M. Beekman; Nico Wulffraat; Wietse Kuis; Paul J. Coffer; Berent J. Prakken

OBJECTIVE Systemic-onset juvenile idiopathic arthritis (JIA) is an autoimmune disease characterized by arthritis and systemic features. Its pathogenesis is still largely unknown. It is characterized immunologically by natural killer (NK) cell dysfunction and cytokine signatures that predominantly feature interleukin-1 (IL-1), IL-6, and IL-18. Since IL-18 can drive NK cell function, we examined how the high plasma levels of this cytokine are related to the documented NK cell failure in these patients. METHODS The phenotype and function of NK cells from 10 healthy control subjects, 15 patients with polyarticular JIA, and 15 patients with systemic-onset JIA were characterized by staining and functional assays in vitro. IL-18 ligand binding was visualized by fluorescence microscopy. Phosphorylation of several MAP kinases and the IL-18 receptor beta (IL-18Rbeta) were visualized by Western blotting. RESULTS IL-18 from the plasma of systemic-onset JIA patients stimulated the activation of NK cells from healthy controls and bound its cognate receptor. However, NK cells from systemic-onset JIA patients failed to up-regulate cell-mediated killing molecules, such as perforin and interferon-gamma, after IL-18 stimulation. Furthermore, treatment with IL-18 did not induce the phosphorylation of receptor-activated MAP kinases in NK cells. Alternate activation of NK cells by IL-12 induced NK cell cytotoxicity. We observed no additive effect of IL-18 in combination with IL-12 in systemic-onset JIA patients. Immunoprecipitation of IL-18Rbeta showed that NK cells from systemic-onset JIA could not phosphorylate this receptor after IL-18 stimulation. CONCLUSION The mechanism of the impaired NK cell function in systemic-onset JIA involves a defect in IL-18Rbeta phosphorylation. This observation has major implications for the understanding and, ultimately, the treatment of systemic-onset JIA.

Collaboration


Dive into the Wilco de Jager's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ger T. Rijkers

University College Roosevelt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salvatore Albani

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk Holzinger

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Sarah Roord

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge