Wilfred A. Abia
University of Yaoundé I
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wilfred A. Abia.
Rapid Communications in Mass Spectrometry | 2012
Benedikt Warth; Michael Sulyok; Philipp Fruhmann; Hannes Mikula; Franz Berthiller; Rainer Schuhmacher; Christian Hametner; Wilfred A. Abia; Gerhard Adam; Johannes Fröhlich; Rudolf Krska
RATIONALE Mycotoxins regularly occur in food worldwide and pose serious health risks to consumers. Since individuals can be exposed to a variety of these toxic secondary metabolites of fungi at the same time, there is a demand for proper analytical methods to assess human exposure by suitable biomarkers. METHODS This study reports on the development of a liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method for the quantitative measurement of 15 mycotoxins and key metabolites in human urine using polarity switching. Deoxynivalenol (DON), DON-3-O-glucuronide, DON-15-O-glucuronide (D15GlcA), de-epoxy DON, nivalenol (NIV), T-2 toxin, HT-2 toxin, zearalenone, zearalenone-14-O-glucuronide, α- and β-zearalenol, fumonisins B(1) and B(2) (FB(1), FB(2)), ochratoxin A (OTA) and aflatoxin M(1) (AFM(1)) were determined without the need for any cleanup using a rapid and simple dilute and shoot approach. RESULTS Validation was performed in the range of 0.005-40 µg L(-1) depending on the analyte and expected urinary concentration levels. Apparent recoveries between 78 and 119% and interday precisions of 2-17% relative standard deviation (RSD) were achieved. The applicability of the method was demonstrated by the analysis of urine samples obtained from Cameroon. In naturally contaminated urine samples up to six biomarkers of exposure (AFM(1), DON, D15GlcA, NIV, FB(1), and OTA) were detected simultaneously. CONCLUSIONS We conclude that the developed LC/MS/MS method is well suited to quantify multiple mycotoxin biomarkers in human urine down to the sub-ppb range within 18 min and without any prior cleanup. The co-occurrence of several mycotoxins in the investigated samples clearly emphasizes the great potential and importance of this method to assess exposure of humans and animals to naturally occurring mycotoxins.
Environment International | 2014
Chibundu N. Ezekiel; Benedikt Warth; Isaac M. Ogara; Wilfred A. Abia; Victoria C. Ezekiel; Joseph Atehnkeng; Michael Sulyok; Paul C. Turner; Grace O. Tayo; Rudolf Krska; Ranajit Bandyopadhyay
A pilot, cross-sectional, correlational study was conducted in eight rural communities in northern Nigeria to investigate mycotoxin exposures in 120 volunteers (19 children, 20 adolescents and 81 adults) using a modern LC-MS/MS based multi-biomarker approach. First morning urine samples were analyzed and urinary biomarker levels correlated with mycotoxin levels in foods consumed the day before urine collection. A total of eight analytes were detected in 61/120 (50.8%) of studied urine samples, with ochratoxin A, aflatoxin M1 and fumonisin B1 being the most frequently occurring biomarkers of exposure. These mycotoxin biomarkers were present in samples from all age categories, suggestive of chronic (lifetime) exposures. Rough estimates of mycotoxin intake suggested some exposures were higher than the tolerable daily intake. Overall, rural consumer populations from Nasarawa were more exposed to several mixtures of mycotoxins in their diets relative to those from Kaduna as shown by food and urine biomarker data. This study has shown that mycotoxin co-exposure may be a major public health challenge in rural Nigeria; this calls for urgent intervention.
Food and Chemical Toxicology | 2013
Wilfred A. Abia; Benedikt Warth; Michael Sulyok; Rudolf Krska; Angèle N. Tchana; Patrick Berka Njobeh; Paul C. Turner; Charles Kouanfack; Mbu Eyongetah; Michael F. Dutton; Paul F. Moundipa
Bio-monitoring of human exposure to mycotoxin has mostly been limited to a few individually measured mycotoxin biomarkers. This study aimed to determine the frequency and level of exposure to multiple mycotoxins in human urine from Cameroonian adults. 175 Urine samples (83% from HIV-positive individuals) and food frequency questionnaire responses were collected from consenting Cameroonians, and analyzed for 15 mycotoxins and relevant metabolites using LC-ESI-MS/MS. In total, eleven analytes were detected individually or in combinations in 110/175 (63%) samples including the biomarkers aflatoxin M1, fumonisin B1, ochratoxin A and total deoxynivalenol. Additionally, important mycotoxins and metabolites thereof, such as fumonisin B2, nivalenol and zearalenone, were determined, some for the first time in urine following dietary exposures. Multi-mycotoxin contamination was common with one HIV-positive individual exposed to five mycotoxins, a severe case of co-exposure that has never been reported in adults before. For the first time in Africa or elsewhere, this study quantified eleven mycotoxin biomarkers and bio-measures in urine from adults. For several mycotoxins estimates indicate that the tolerable daily intake is being exceeded in this study population. Given that many mycotoxins adversely affect the immune system, future studies will examine whether combinations of mycotoxins negatively impact Cameroonian population particularly immune-suppressed individuals.
Comprehensive Reviews in Food Science and Food Safety | 2018
Chibundu N. Ezekiel; Kolawole I. Ayeni; Jane Misihairabgwi; Yinka Somorin; Ihuoma E. Chibuzor-Onyema; Oluwawapelumi A. Oyedele; Wilfred A. Abia; Michael Sulyok; Gordon S. Shephard; Rudolf Krska
African traditional beverages are widely consumed food-grade liquids processed from single or mixed grains (mostly cereals) by simple food processing techniques, of which fermentation tops the list. These beverages are very diverse in composition and nutritional value and are specific to different cultures and countries. The grains from which home-processed traditional beverages are made across Africa are often heavily contaminated with multiple mycotoxins due to poor agricultural, handling, and storage practices that characterize the region. In the literature, there are many reports on the spectrum and quantities of mycotoxins in crops utilized in traditional beverage processing, however, few studies have analyzed mycotoxins in the beverages themselves. The available reports on mycotoxins in African traditional beverages are mainly centered on the finished products with little information on the process chain (raw material to final product), fate of the different mycotoxins during processing, and exposure estimates for consumers. Regulations targeting these local beverages are not in place despite the heavy occurrence of mycotoxins in their raw materials and the high consumption levels of the products in many homes. This paper therefore comprehensively discusses for the 1st time the available data on the wide variety of African traditional beverages, the mycotoxins that contaminate the beverages and their raw materials, exposure estimates, and possible consequent effects. Mycotoxin control options and future directions for mycotoxin research in beverage production are also highlighted.
Analytica Chimica Acta | 2018
Bojan Šarkanj; Chibundu N. Ezekiel; Paul C. Turner; Wilfred A. Abia; Michael Rychlik; Rudolf Krska; Michael Sulyok; Benedikt Warth
There is a critical need to better understand the patterns, levels and combinatory effects of exposures we are facing through our diet and environment. Mycotoxin mixtures are of particular concern due to chronic low dose exposures caused by naturally contaminated food. To facilitate new insights into their role in chronic disease, mycotoxins and their metabolites are quantified in bio-fluids as biomarkers of exposure. Here, we describe a highly sensitive urinary assay based on ultra-high performance liquid chromatography - tandem mass spectrometer (UHPLC-MS/MS) and 13C-labelled or deuterated internal standards covering the most relevant regulated and emerging mycotoxins. Utilizing enzymatic pre-treatment, solid phase extraction and UHPLC separation, the sensitivity of the method was significantly higher (10-160x lower LODs) than in a previously described method used for comparison purpose, and stable isotopes provided compensation for challenging matrix effects. This method was in-house validated and applied to re-assess mycotoxin exposure in urine samples obtained from Nigerian children, adolescent and adults, naturally exposed through their regular diet. Owing to the methods high sensitivity, biomarkers were detected in all samples. The mycoestrogen zearalenone was the most frequently detected contaminant (82%) but also ochratoxin A (76%), aflatoxin M1 (73%) and fumonisin B1 (71%) were quantified in a large share of urines. Overall, 57% of 120 urines were contaminated with both, aflatoxin M1 and fumonisin B1, and other co-exposures were frequent. These results clearly demonstrate the advanced performance of the method to assess lowest background exposures (pg mL-1 range) using a single, highly robust assay that will allow for the systematic investigation of low dose effects on human health.
Toxins | 2018
Rumbidzai Changwa; Wilfred A. Abia; Titus A.M. Msagati; Hlengilizwe Nyoni; Khanyisa Ndleve; Patrick Berka Njobeh
The indispensable nature of toxigenic fungi and mycotoxins in agricultural systems is of worldwide concern, hence the need for surveillance studies to preserve public health. Thirteen dairy farms were surveyed and 40 dairy feeds of varying nature collected and analyzed for mycotoxins. Estimated levels of aflatoxins (AFs), fumonisin B1 (FB1), ochratoxin A (OTA), citrinin (CIT), zearalenone (ZEN), α-zearalenol (α-ZEL), β-zearalenol (β-ZEL), deoxynivalenol (DON), 3- and 15-acetyl-deoxynivalenol (ADONs), HT-2 toxin (HT-2), and beauvericin (BEA) were established using liquid chromatography-tandem mass spectrometry. Highest frequencies (40/40) were found for AFG2 (range: <LOQ—116.1 ppb), α-ZEL (range: 0.98–13.24 ppb), and β-ZEL (range: 0.73–4.71 ppb), followed by AFB2 at 37/40 (range: <LOQ—23.88 ppb), BEA at 36/40 (range: <LOQ—55.99 ppb), HT-2 at 35/40 (range: <LOQ—312.95 ppb), and FB1 at 34/40 (range: <LOQ—1389.62 ppb). Apart from samples exceeding regulatory limits for total AFs in dairy feeds due to the high amounts of AFG2 and AFB2, levels of other mycotoxins were regarded as safe for dairy production in South Africa. This is the first-time the natural occurrence of the cold climate HT-2 in South African feeds was documented. Persistent co-occurrence of multiple mycotoxins across samples, however, may elicit synergistic and/or additive effects in hosts, hence raising concerns about their impacts and how such interactions may affect the dairy livestock sector.
Food Control | 2013
Wilfred A. Abia; Benedikt Warth; Michael Sulyok; Rudolf Krska; Angèle N. Tchana; Patrick Berka Njobeh; Michael F. Dutton; Paul F. Moundipa
Food and Chemical Toxicology | 2013
Bojan Šarkanj; Benedikt Warth; Silvio Uhlig; Wilfred A. Abia; Michael Sulyok; Tomislav Klapec; Rudolf Krska; Ines Banjari
Lwt - Food Science and Technology | 2015
Chibundu N. Ezekiel; Wilfred A. Abia; Isaac M. Ogara; Michael Sulyok; Benedikt Warth; Rudolf Krska
Japanese Journal of Veterinary Research | 2013
Wilfred A. Abia; Grace Nella Simo; Benedikt Warth; Michael Sulyok; Rudolf Krska; Angèle N. Tchana; Paul F. Moundipa