Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wilfred F.M. Röling is active.

Publication


Featured researches published by Wilfred F.M. Röling.


Nature Reviews Microbiology | 2006

Marine microorganisms make a meal of oil

Ian M. Head; D. Martin Jones; Wilfred F.M. Röling

Hundreds of millions of litres of petroleum enter the environment from both natural and anthropogenic sources every year. The input from natural marine oil seeps alone would be enough to cover all of the worlds oceans in a layer of oil 20 molecules thick. That the globe is not swamped with oil is testament to the efficiency and versatility of the networks of microorganisms that degrade hydrocarbons, some of which have recently begun to reveal the secrets of when and how they exploit hydrocarbons as a source of carbon and energy.


Applied and Environmental Microbiology | 2002

Robust Hydrocarbon Degradation and Dynamics of Bacterial Communities during Nutrient-Enhanced Oil Spill Bioremediation

Wilfred F.M. Röling; Michael G. Milner; D. Martin Jones; Kenneth Lee; Fabien Daniel; Richard J. P. Swannell; Ian M. Head

ABSTRACT Degradation of oil on beaches is, in general, limited by the supply of inorganic nutrients. In order to obtain a more systematic understanding of the effects of nutrient addition on oil spill bioremediation, beach sediment microcosms contaminated with oil were treated with different levels of inorganic nutrients. Oil biodegradation was assessed respirometrically and on the basis of changes in oil composition. Bacterial communities were compared by numerical analysis of denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA genes and cloning and sequencing of PCR-amplified 16S rRNA genes. Nutrient amendment over a wide range of concentrations significantly improved oil degradation, confirming that N and P limited degradation over the concentration range tested. However, the extent and rate of oil degradation were similar for all microcosms, indicating that, in this experiment, it was the addition of inorganic nutrients rather than the precise amount that was most important operationally. Very different microbial communities were selected in all of the microcosms. Similarities between DGGE profiles of replicate samples from a single microcosm were high (95% ± 5%), but similarities between DGGE profiles from replicate microcosms receiving the same level of inorganic nutrients (68% ± 5%) were not significantly higher than those between microcosms subjected to different nutrient amendments (63% ± 7%). Therefore, it is apparent that the different communities selected cannot be attributed to the level of inorganic nutrients present in different microcosms. Bioremediation treatments dramatically reduced the diversity of the bacterial community. The decrease in diversity could be accounted for by a strong selection for bacteria belonging to the alkane-degrading Alcanivorax/Fundibacter group. On the basis of Shannon-Weaver indices, rapid recovery of the bacterial community diversity to preoiling levels of diversity occurred. However, although the overall diversity was similar, there were considerable qualitative differences in the community structure before and after the bioremediation treatments.


Applied and Environmental Microbiology | 2001

Relationships between Microbial Community Structure and Hydrochemistry in a Landfill Leachate-Polluted Aquifer

Wilfred F.M. Röling; B.M. van Breukelen; M. Braster; B. Lin; H. W. van Verseveld

ABSTRACT Knowledge about the relationship between microbial community structure and hydrogeochemistry (e.g., pollution, redox and degradation processes) in landfill leachate-polluted aquifers is required to develop tools for predicting and monitoring natural attenuation. In this study analyses of pollutant and redox chemistry were conducted in parallel with culture-independent profiling of microbial communities present in a well-defined aquifer (Banisveld, The Netherlands). Degradation of organic contaminants occurred under iron-reducing conditions in the plume of pollution, while upstream of the landfill and above the plume denitrification was the dominant redox process. Beneath the plume iron reduction occurred. Numerical comparison of 16S ribosomal DNA (rDNA)-based denaturing gradient gel electrophoresis (DGGE) profiles of Bacteria andArchaea in 29 groundwater samples revealed a clear difference between the microbial community structures inside and outside the contaminant plume. A similar relationship was not evident in sediment samples. DGGE data were supported by sequencing cloned 16S rDNA. Upstream of the landfill members of the β subclass of the class Proteobacteria(β-proteobacteria) dominated. This group was not encountered beneath the landfill, where gram-positive bacteria dominated. Further downstream the contribution of gram-positive bacteria to the clone library decreased, while the contribution of δ-proteobacteria strongly increased and β-proteobacteria reappeared. The β-proteobacteria (Acidovorax,Rhodoferax) differed considerably from those found upstream (Gallionella, Azoarcus). Direct comparisons of cloned 16S rDNA with bands in DGGE profiles revealed that the data from each analysis were comparable. A relationship was observed between the dominant redox processes and the bacteria identified. In the iron-reducing plume members of the familyGeobacteraceae made a strong contribution to the microbial communities. Because the only known aromatic hydrocarbon-degrading, iron-reducing bacteria areGeobacter spp., their occurrence in landfill leachate-contaminated aquifers deserves more detailed consideration.


Applied and Environmental Microbiology | 2004

Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil

Wilfred F.M. Röling; Michael G. Milner; D.M. Jones; F. Fratepietro; Richard Swannell; Fabien Daniel; Ian M. Head

ABSTRACT A field-scale experiment with a complete randomized block design was performed to study the degradation of buried oil on a shoreline over a period of almost 1 year. The following four treatments were examined in three replicate blocks: two levels of fertilizer treatment of oil-treated plots, one receiving a weekly application of liquid fertilizer and the other treated with a slow-release fertilizer; and two controls, one not treated with oil and the other treated with oil but not with fertilizer. Oil degradation was monitored by measuring carbon dioxide evolution and by chemical analysis of the oil. Buried oil was degraded to a significantly greater extent in fertilized plots, but no differences in oil chemistry were observed between the two different fertilizer treatments, although carbon dioxide production was significantly higher in the oil-treated plots that were treated with slow-release fertilizer during the first 14 days of the experiment. Bacterial communities present in the beach sediments were profiled by denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA gene fragments and 16S rRNA amplified by reverse transcriptase PCR. Similarities between the DGGE profiles were calculated, and similarity matrices were subjected to statistical analysis. These analyses showed that although significant hydrocarbon degradation occurred both in plots treated with oil alone and in the plots treated with oil and liquid fertilizer, the bacterial community structure in these plots was, in general, not significantly different from that in the control plots that were not treated with oil and did not change over time. In contrast, the bacterial community structure in the plots treated with oil and slow-release fertilizer changed rapidly, and there were significant differences over time, as well as between blocks and even within plots. The differences were probably related to the higher concentrations of nutrients measured in interstitial water from the plots treated with slow-release fertilizer. Bacteria with 16S rRNA sequences closely related (>99.7% identity) to Alcanivorax borkumensis and Pseudomonas stutzeri sequences dominated during the initial phase of oil degradation in the plots treated with slow-release fertilizer. Field data were compared to the results of previous laboratory microcosm experiments, which revealed significant differences.


New Phytologist | 2010

Positive effects of organic farming on below‐ground mutualists: large‐scale comparison of mycorrhizal fungal communities in agricultural soils

Erik Verbruggen; Wilfred F.M. Röling; Hannes A. Gamper; George A. Kowalchuk; H.A. Verhoef; Marcel G. A. van der Heijden

*The impact of various agricultural practices on soil biodiversity and, in particular, on arbuscular mycorrhizal fungi (AMF), is still poorly understood, although AMF can provide benefit to plants and ecosystems. Here, we tested whether organic farming enhances AMF diversity and whether AMF communities from organically managed fields are more similar to those of species-rich grasslands or conventionally managed fields. *To address this issue, the AMF community composition was assessed in 26 arable fields (13 pairs of organically and conventionally managed fields) and five semi-natural grasslands, all on sandy soil. Terminal restriction fragment length polymorphism community fingerprinting was used to characterize AMF community composition. *The average number of AMF taxa was highest in grasslands (8.8), intermediate in organically managed fields (6.4) and significantly lower in conventionally managed fields (3.9). Moreover, AMF richness increased significantly with the time since conversion to organic agriculture. AMF communities of organically managed fields were also more similar to those of natural grasslands when compared with those under conventional management, and were less uniform than their conventional counterparts, as expressed by higher beta-diversity (between-site diversity). *We suggest that organic management in agro-ecosystems contributes to the restoration and maintenance of these important below-ground mutualists.


Research in Microbiology | 2003

The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects

Wilfred F.M. Röling; Ian M. Head; Steve Larter

The majority of the Earths petroleum resource is partly biodegraded. This is of considerable practical significance and can limit economic exploitation of petroleum reserves and lead to problems during petroleum production. Knowledge of the microorganisms present in petroleum reservoirs, their physiological properties and the biochemical potential for hydrocarbon degradation benefits successful petroleum exploration. Anaerobic conditions prevail in petroleum reservoirs and biological hydrocarbon degradation is apparently inhibited at temperatures above 80-90 degrees C. We summarise available knowledge and conjecture on the dominant biological processes active during subsurface petroleum biodegradation.


Molecular Ecology | 2012

Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils

Erik Verbruggen; Marcel G. A. van der Heijden; James T. Weedon; George A. Kowalchuk; Wilfred F.M. Röling

Understanding how communities assemble is a central goal of ecology. This is particularly relevant for communities of arbuscular mycorrhizal fungi (AMF), because the community composition of these beneficial plant symbionts influences important ecosystem processes. Moreover, AMF may be used as sensitive indicators of ecological soil quality if they respond to environmental variation in a predictable way. Here, we use a molecular profiling technique (T‐RFLP of 25S rRNA gene fragments) to test which factors determine AM fungal community composition in 40 agricultural soils in the Netherlands. In particular, we test whether species richness, dominance structure and community nestedness are influenced by management type (in pairs of organically and conventionally farmed fields), and we examine the contribution of crop species (maize vs. potato), soil type (sand vs. clay‐textured soils) and habitat (plant root vs. bulk soil) on AMF community characteristics. AMF richness varied from 1 to 11 taxa per field. Communities from species‐poor fields were found to be subsets of those in richer fields, indicating nestedness and a progressive ‘loss’ from the species pool. AMF taxa richness and occurrence in soil and plant roots were highly correlated, and richness was related to management intensity (phosphate availability and grass‐cropping history together explained 32% and 50% of richness in roots and soils). Soil type together with soil chemical parameters explained only 17% of variance in AMF community structure. We synthesize these results by discussing the potential contribution of a ‘bottleneck effect’ on AMF communities through increased stochastic effects under environmental stress.


Journal of Contaminant Hydrology | 2003

Biogeochemistry and isotope geochemistry of a landfill leachate plume

Boris M. van Breukelen; Wilfred F.M. Röling; Jacobus Groen; J. Griffioen; Henk W. van Verseveld

The biogeochemical processes were identified which improved the leachate composition in the flow direction of a landfill leachate plume (Banisveld, The Netherlands). Groundwater observation wells were placed at specific locations after delineating the leachate plume using geophysical tests to map subsurface conductivity. Redox processes were determined using the distribution of solid and soluble redox species, hydrogen concentrations, concentration of dissolved gases (N(2), Ar, and CH(4)), and stable isotopes (delta15N-NO(3), delta34S-SO(4), delta13C-CH(4), delta2H-CH(4), and delta13C of dissolved organic and inorganic carbon (DOC and DIC, respectively)). The combined application of these techniques improved the redox interpretation considerably. Dissolved organic carbon (DOC) decreased downstream in association with increasing delta13C-DOC values confirming the occurrence of degradation. Degradation of DOC was coupled to iron reduction inside the plume, while denitrification could be an important redox process at the top fringe of the plume. Stable carbon and hydrogen isotope signatures of methane indicated that methane was formed inside the landfill and not in the plume. Total gas pressure exceeded hydrostatic pressure in the plume, and methane seems subject to degassing. Quantitative proof for DOC degradation under iron-reducing conditions could only be obtained if the geochemical processes cation exchange and precipitation of carbonate minerals (siderite and calcite) were considered and incorporated in an inverse geochemical model of the plume. Simulation of delta13C-DIC confirmed that precipitation of carbonate minerals happened.


Biodegradation | 2002

Natural attenuation: What does the subsurface have in store?

Wilfred F.M. Röling; H. W. van Verseveld

Throughout the world, organic and inorganic substances leach intothe subsurface as a result of human activities and accidents. There, the chemicals pose director indirect threats to the environment and to increasingly scarce drinking water resources.At many contaminated sites the subsurface is able to attenuate pollutants which, potentially,lowers the costs of remediation. Natural attenuation comprises a wide range of processesof which the microbiological component, which is responsible for intrinsic bioremediation,can decrease the mass and toxicity of the contaminants and is, therefore, the mostimportant. Reliance on intrinsic bioremediation requires methods to monitor the process. Thesubject of this review is how knowledge of subsurface geology and hydrology, microbial ecologyand degradation processes is used and can be used to monitor the potential andcapacity for intrinsic bioremediation in the subsurface and to verify degradation in situ.As research on natural attenuation in the subsurface has been rather fragmented and limitedand often allows only conclusions to be drawn of the site under investigation, we providea concept based on Environmental Specimen Banking which will contribute to furtherunderstanding subsurface natural attenuation processes and will help to develop andimplement new monitoring techniques.


Microbial Ecology | 2000

Analysis of Microbial Communities in a Landfill Leachate Polluted Aquifer using a New Method for Anaerobic Physiological Profiling and 16S rDNA Based Fingerprinting.

Wilfred F.M. Röling; B.M. van Breukelen; M. Braster; M.T. Goeltom; J. Groen; H. W. van Verseveld

A bstractDatabases containing information regarding presence and activity of microbial communities will be very useful for determination of the potential for intrinsic bioremediation in landfill leachate polluted aquifers. Simple analyses such as community-level physiological profiling (CLPP) and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA fragments yield large sets of data for inclusion into such databases. In this study we describe the development of a method for anaerobic CLPP, using commercially available Biolog plates. Incubation at the in situ temperature of the aquifer (10°C) for 28 days was optimal for obtaining a specific, reproducible physiological profile. Anaerobic incubation was essential for profiling anaerobic communities. The anaerobic cultivation-dependent CLPP method and cultivation-independent DGGE were applied to groundwater and sediment samples from the aquifer near the Coupépolder landfill in The Netherlands. A combination of computer-assisted CLPP and DGGE analysis of both groundwater and sediment samples yielded the best separating power for characterizing microbial communities in the aquifer. Communities in groundwater were significantly different from those in the corresponding sediment. Microbial communities present in subsamples from sediment cores usually were similar for the various sampling locations. Variation was observed for the heterogeneous sediment beneath the landfill. Both anaerobic CLPP and DGGE analysis clearly separated microbial communities from the polluted aquifer underneath the landfill from those in the less or not polluted aquifer downstream and upstream of the landfill.

Collaboration


Dive into the Wilfred F.M. Röling's collaboration.

Top Co-Authors

Avatar

M. Braster

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris M. van Breukelen

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Pascale Ehrenfreund

George Washington University

View shared research outputs
Top Co-Authors

Avatar

B. Lin

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Anniet M. Laverman

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge