Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wilfred van IJcken is active.

Publication


Featured researches published by Wilfred van IJcken.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells

Jessica Zuin; Jesse R. Dixon; Michael M. van der Reijden; Zhen Z. Ye; Petros Kolovos; Rutger W. W. Brouwer; Mariëtte M.P.C. van de Corput; Harmen J.G. van de Werken; Tobias A. Knoch; Wilfred van IJcken; Frank Grosveld; Ben B. Ren; Kerstin S. Wendt

Significance For the 2m DNA to fit into the tiny cell nucleus, it is wrapped around nucleosomes and folded into loops clustering together in domains. Genome function depends on this 3D-organization, especially on-going dynamic processes like transcription. Techniques studying the network of DNA contacts genome-wide have recently revealed this 3D architecture, but the protein factors behind this are not understood. We study two proteins that are known to help form DNA loops: cohesin and CTCC-binding factor (CTCF). Respective depletion and analysis of DNA contacts genome-wide show that CTCF is required to separate neighboring folding domains and keep cohesin in place, whereas cohesin is important for shaping the domains. Consistently, we observe different changes of gene expression. Recent studies of genome-wide chromatin interactions have revealed that the human genome is partitioned into many self-associating topological domains. The boundary sequences between domains are enriched for binding sites of CTCC-binding factor (CTCF) and the cohesin complex, implicating these two factors in the establishment or maintenance of topological domains. To determine the role of cohesin and CTCF in higher-order chromatin architecture in human cells, we depleted the cohesin complex or CTCF and examined the consequences of loss of these factors on higher-order chromatin organization, as well as the transcriptome. We observed a general loss of local chromatin interactions upon disruption of cohesin, but the topological domains remain intact. However, we found that depletion of CTCF not only reduced intradomain interactions but also increased interdomain interactions. Furthermore, distinct groups of genes become misregulated upon depletion of cohesin and CTCF. Taken together, these observations suggest that CTCF and cohesin contribute differentially to chromatin organization and gene regulation.


PLOS ONE | 2010

Gene Expression-Based Classification of Non-Small Cell Lung Carcinomas and Survival Prediction

Jun Hou; Joachim Aerts; Bianca den Hamer; Wilfred van IJcken; Michael A. den Bakker; Peter Riegman; Cor van der Leest; Peter J. van der Spek; John A. Foekens; Henk C. Hoogsteden; Frank Grosveld; Sjaak Philipsen

Background Current clinical therapy of non-small cell lung cancer depends on histo-pathological classification. This approach poorly predicts clinical outcome for individual patients. Gene expression profiling holds promise to improve clinical stratification, thus paving the way for individualized therapy. Methodology and Principal Findings A genome-wide gene expression analysis was performed on a cohort of 91 patients. We used 91 tumor- and 65 adjacent normal lung tissue samples. We defined sets of predictor genes (probe sets) with the expression profiles. The power of predictor genes was evaluated using an independent cohort of 96 non-small cell lung cancer- and 6 normal lung samples. We identified a tumor signature of 5 genes that aggregates the 156 tumor and normal samples into the expected groups. We also identified a histology signature of 75 genes, which classifies the samples in the major histological subtypes of non-small cell lung cancer. Correlation analysis identified 17 genes which showed the best association with post-surgery survival time. This signature was used for stratification of all patients in two risk groups. Kaplan-Meier survival curves show that the two groups display a significant difference in post-surgery survival time (p = 5.6E-6). The performance of the signatures was validated using a patient cohort of similar size (Duke University, n = 96). Compared to previously published prognostic signatures for NSCLC, the 17 gene signature performed well on these two cohorts. Conclusions The gene signatures identified are promising tools for histo-pathological classification of non-small cell lung cancer, and may improve the prediction of clinical outcome.


Nature Genetics | 2010

Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin

Joseph A. Borg; Petros Papadopoulos; Marianthi Georgitsi; Laura Gutierrez; Godfrey Grech; Pavlos Fanis; Marios Phylactides; Annemieke J. M. H. Verkerk; Peter J. van der Spek; Christian Scerri; Wilhelmina Cassar; Ruth Galdies; Wilfred van IJcken; Zeliha Ozgur; Nynke Gillemans; Jun Hou; Marisa Bugeja; Frank Grosveld; Marieke von Lindern; Alex E. Felice; George P. Patrinos; Sjaak Philipsen

Hereditary persistence of fetal hemoglobin (HPFH) is characterized by persistent high levels of fetal hemoglobin (HbF) in adults. Several contributory factors, both genetic and environmental, have been identified but others remain elusive. HPFH was found in 10 of 27 members from a Maltese family. We used a genome-wide SNP scan followed by linkage analysis to identify a candidate region on chromosome 19p13.12–13. Sequencing revealed a nonsense mutation in the KLF1 gene, p.K288X, which ablated the DNA-binding domain of this key erythroid transcriptional regulator. Only family members with HPFH were heterozygous carriers of this mutation. Expression profiling on primary erythroid progenitors showed that KLF1 target genes were downregulated in samples from individuals with HPFH. Functional assays suggested that, in addition to its established role in regulating adult globin expression, KLF1 is a key activator of the BCL11A gene, which encodes a suppressor of HbF expression. These observations provide a rationale for the effects of KLF1 haploinsufficiency on HbF levels.


Genes & Development | 2011

The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA

Erik Splinter; Elzo de Wit; Elphège P. Nora; Petra Klous; Harmen J.G. van de Werken; Yun Zhu; Lucas J.T. Kaaij; Wilfred van IJcken; Joost Gribnau; Edith Heard; Wouter de Laat

Three-dimensional topology of DNA in the cell nucleus provides a level of transcription regulation beyond the sequence of the linear DNA. To study the relationship between the transcriptional activity and the spatial environment of a gene, we used allele-specific chromosome conformation capture-on-chip (4C) technology to produce high-resolution topology maps of the active and inactive X chromosomes in female cells. We found that loci on the active X form multiple long-range interactions, with spatial segregation of active and inactive chromatin. On the inactive X, silenced loci lack preferred interactions, suggesting a unique random organization inside the inactive territory. However, escapees, among which is Xist, are engaged in long-range contacts with each other, enabling identification of novel escapees. Deletion of Xist results in partial refolding of the inactive X into a conformation resembling the active X without affecting gene silencing or DNA methylation. Our data point to a role for Xist RNA in shaping the conformation of the inactive X chromosome at least partially independent of transcription.


The EMBO Journal | 2009

MicroRNA‐mediated gene silencing modulates the UV‐induced DNA‐damage response

Joris Pothof; Nicole S. Verkaik; Wilfred van IJcken; Erik A.C. Wiemer; Van T B Ta; Gijsbertus T. J. van der Horst; Nicolaas G. J. Jaspers; Dik C. van Gent; Jan H.J. Hoeijmakers; Stephan Persengiev

DNA damage provokes DNA repair, cell‐cycle regulation and apoptosis. This DNA‐damage response encompasses gene‐expression regulation at the transcriptional and post‐translational levels. We show that cellular responses to UV‐induced DNA damage are also regulated at the post‐transcriptional level by microRNAs. Survival and checkpoint response after UV damage was severely reduced on microRNA‐mediated gene‐silencing inhibition by knocking down essential components of the microRNA‐processing pathway (Dicer and Ago2). UV damage triggered a cell‐cycle‐dependent relocalization of Ago2 into stress granules and various microRNA‐expression changes. Ago2 relocalization required CDK activity, but was independent of ATM/ATR checkpoint signalling, whereas UV‐responsive microRNA expression was only partially ATM/ATR independent. Both microRNA‐expression changes and stress‐granule formation were most pronounced within the first hours after genotoxic stress, suggesting that microRNA‐mediated gene regulation operates earlier than most transcriptional responses. The functionality of the microRNA response is illustrated by the UV‐inducible miR‐16 that downregulates checkpoint‐gene CDC25a and regulates cell proliferation. We conclude that microRNA‐mediated gene regulation adds a new dimension to the DNA‐damage response.


Genes & Development | 2010

The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation

Eric Soler; Charlotte Andrieu-Soler; Ernie de Boer; Jan Christian Bryne; Supat Thongjuea; Ralph Stadhouders; Robert-Jan Palstra; Mary Stevens; Christel Kockx; Wilfred van IJcken; Jun Hou; Christine Steinhoff; Erikjan Rijkers; Boris Lenhard; Frank Grosveld

One of the complexes formed by the hematopoietic transcription factor Gata1 is a complex with the Ldb1 (LIM domain-binding protein 1) and Tal1 proteins. It is known to be important for the development and differentiation of the erythroid cell lineage and is thought to be implicated in long-range interactions. Here, the dynamics of the composition of the complex-in particular, the binding of the negative regulators Eto2 and Mtgr1-are studied, in the context of their genome-wide targets. This shows that the complex acts almost exclusively as an activator, binding a very specific combination of sequences, with a positioning relative to transcription start site, depending on the type of the core promoter. The activation is accompanied by a net decrease in the relative binding of Eto2 and Mtgr1. A Chromosome Conformation Capture sequencing (3C-seq) assay also shows that the binding of the Ldb1 complex marks genomic interaction sites in vivo. This establishes the Ldb1 complex as a positive regulator of the final steps of erythroid differentiation that acts through the shedding of negative regulators and the active interaction between regulatory sequences.


American Journal of Human Genetics | 2008

Three Genome-wide Association Studies and a Linkage Analysis Identify HERC2 as a Human Iris Color Gene

Manfred Kayser; Fan Liu; A. Cecile J. W. Janssens; Fernando Rivadeneira; Oscar Lao; Kate van Duijn; Mark Vermeulen; Pascal P. Arp; Mila Jhamai; Wilfred van IJcken; Johan T. den Dunnen; Simon Heath; Diana Zelenika; Dominiek D. G. Despriet; C. C. W. Klaver; Johannes R. Vingerling; Paulus T. V. M. de Jong; Albert Hofman; Yurii S. Aulchenko; André G. Uitterlinden; Ben A. Oostra; Cornelia van Duijn

Human iris color was one of the first traits for which Mendelian segregation was established. To date, the genetics of iris color is still not fully understood and is of interest, particularly in view of forensic applications. In three independent genome-wide association (GWA) studies of a total of 1406 persons and a genome-wide linkage study of 1292 relatives, all from the Netherlands, we found that the 15q13.1 region is the predominant region involved in human iris color. There were no other regions showing consistent genome-wide evidence for association and linkage to iris color. Single nucleotide polymorphisms (SNPs) in the HERC2 gene and, to a lesser extent, in the neighboring OCA2 gene were independently associated to iris color variation. OCA2 has been implicated in iris color previously. A replication study within two populations confirmed that the HERC2 gene is a new and significant determinant of human iris color variation, in addition to OCA2. Furthermore, HERC2 rs916977 showed a clinal allele distribution across 23 European populations, which was significantly correlated to iris color variation. We suggest that genetic variants regulating expression of the OCA2 gene exist in the HERC2 gene or, alternatively, within the 11.7 kb of sequence between OCA2 and HERC2, and that most iris color variation in Europeans is explained by those two genes. Testing markers in the HERC2-OCA2 region may be useful in forensic applications to predict eye color phenotypes of unknown persons of European genetic origin.


Nature Genetics | 2011

Sox2 cooperates with Chd7 to regulate genes that are mutated in human syndromes

Erik Engelen; Umut Akinci; Jan Christian Bryne; Jun Hou; Cristina Gontan; Maaike Moen; Dorota Szumska; Christel Kockx; Wilfred van IJcken; Dick H. W. Dekkers; Jeroen Demmers; Erikjan Rijkers; Shoumo Bhattacharya; Sjaak Philipsen; Larysa Pevny; Frank Grosveld; Robbert J. Rottier; Boris Lenhard; Raymond A. Poot

The HMG-box transcription factor Sox2 plays a role throughout neurogenesis and also acts at other stages of development, as illustrated by the multiple organs affected in the anophthalmia syndrome caused by SOX2 mutations. Here we combined proteomic and genomic approaches to characterize gene regulation by Sox2 in neural stem cells. Chd7, a chromatin remodeling ATPase associated with CHARGE syndrome, was identified as a Sox2 transcriptional cofactor. Sox2 and Chd7 physically interact, have overlapping genome-wide binding sites and regulate a set of common target genes including Jag1, Gli3 and Mycn, genes mutated in Alagille, Pallister-Hall and Feingold syndromes, which show malformations also associated with SOX2 anophthalmia syndrome or CHARGE syndrome. Regulation of disease-associated genes by a Sox2-Chd7 complex provides a plausible explanation for several malformations associated with SOX2 anophthalmia syndrome or CHARGE syndrome. Indeed, we found that Chd7-haploinsufficient embryos showed severely reduced expression of Jag1 in the developing inner ear.


PLOS Genetics | 2008

Delayed and accelerated aging share common longevity assurance mechanisms

Björn Schumacher; Ingrid van der Pluijm; Michael Moorhouse; Theodore Kosteas; Andria Rasile Robinson; Yousin Suh; Timo M. Breit; Harry van Steeg; Laura J. Niedernhofer; Wilfred van IJcken; Andrzej Bartke; Stephen R. Spindler; Jan H.J. Hoeijmakers; Gijsbertus T. J. van der Horst; George A. Garinis

Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of “survival” responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension.


Aging Cell | 2010

Short‐term dietary restriction and fasting precondition against ischemia reperfusion injury in mice

James R. Mitchell; Marielle Verweij; Karl Brand; Marieke van de Ven; Natascha Goemaere; Sandra van den Engel; Timothy Chu; Flavio Forrer; Cristina Müller; Marion de Jong; Wilfred van IJcken; Jan N. M. IJzermans; Jan H.J. Hoeijmakers; Ron W. F. de Bruin

Dietary restriction (DR) extends lifespan and increases resistance to multiple forms of stress, including ischemia reperfusion injury to the brain and heart in rodents. While maximal effects on lifespan require long‐term restriction, the kinetics of onset of benefits against acute stress is not known. Here, we show that 2–4 weeks of 30% DR improved survival and kidney function following renal ischemia reperfusion injury in mice. Brief periods of water‐only fasting were similarly effective at protecting against ischemic damage. Significant protection occurred within 1 day, persisted for several days beyond the fasting period and extended to another organ, the liver. Protection by both short‐term DR and fasting correlated with improved insulin sensitivity, increased expression of markers of antioxidant defense and reduced expression of markers of inflammation and insulin/insulin‐like growth factor‐1 signaling. Unbiased transcriptional profiling of kidneys from mice subject to short‐term DR or fasting revealed a significant enrichment of signature genes of long‐term DR. These data demonstrate that brief periods of reduced food intake, including short‐term daily restriction and fasting, can increase resistance to ischemia reperfusion injury in rodents and suggest a rapid onset of benefits of DR in mammals.

Collaboration


Dive into the Wilfred van IJcken's collaboration.

Top Co-Authors

Avatar

Frank Grosveld

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rutger W. W. Brouwer

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Christel Kockx

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petros Kolovos

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zeliha Ozgur

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeroen Demmers

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge