Wilhelm von Waldenfels
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wilhelm von Waldenfels.
Mathematische Zeitschrift | 1988
Luigi Accardi; Michael Schürmann; Wilhelm von Waldenfels
On introduit la notion de processus quantique independant a increment stationnaire sur des superalgebres et on demontre un theoreme de reconstruction qui etablit une correspondance un-a-un entre ces processus et leurs generateurs infinitesimaux
Archive | 2009
Wilhelm von Waldenfels
Radiative transfer is connected with Markov processes in two ways. The usual transfer equation corresponds to a process with five dimensional state space in continuous time, the Milne’s equation corresponds to process in three dimensional state space in discrete time.
QUANTUM THEORY: Reconsideration of Foundations—4 | 2007
Wilhelm von Waldenfels
The transfer equation for polarized light is related to a non‐commutative Markov process. Using scattering by two level atoms, where the lower state is an s‐state and the upper state is a p‐state, and the limits of geometrical optics and singular coupling and assuming, that the scatterers form a Poisson point process, the infinitesimal law of the Markov process can be determined. That is equivalent to the transfer equation.
Archive | 2000
Wilhelm von Waldenfels
We consider the stochastic differential equation
Stochastics | 2017
Wilhelm von Waldenfels
Stochastics An International Journal of Probability and Stochastic Processes | 2012
Wilhelm von Waldenfels
\frac{{dU_{s}^{t}}}{{dt}} = ({{L}_{0}}F(t) + {{L}_{1}}{{F}^{ + }}(t))U_{s}^{t}
Stochastics An International Journal of Probability and Stochastic Processes | 2009
Wilhelm von Waldenfels
Archive | 1985
Luigi Accardi; Wilhelm von Waldenfels
where
Archive | 1973
Wilhelm von Waldenfels
Archive | 1988
Michael Schürmann; Wilhelm von Waldenfels
F(t) = \int {g(t - s){{a}_{s}}ds}