Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Will Archer is active.

Publication


Featured researches published by Will Archer.


Journal of Human Evolution | 2014

Early Pleistocene aquatic resource use in the Turkana Basin

Will Archer; David R. Braun; John W. K. Harris; Jack T. McCoy; Brian G. Richmond

Evidence for the acquisition of nutritionally dense food resources by early Pleistocene hominins has implications for both hominin biology and behavior. Aquatic fauna may have comprised a source of highly nutritious resources to hominins in the Turkana Basin at ∼1.95 Ma. Here we employ multiple datasets to examine the issue of aquatic resource use in the early Pleistocene. This study focuses on four components of aquatic faunal assemblages (1) taxonomic diversity, (2) skeletal element proportion, (3) bone fragmentation and (4) bone surface modification. These components are used to identify associations between early Pleistocene aquatic remains and hominin behavior at the site of FwJj20 in the Koobi Fora Fm. (Kenya). We focus on two dominant aquatic species: catfish and turtles. Further we suggest that data on aquatic resource availability as well as ethnographic examples of aquatic resource use complement our observations on the archaeological remains from FwJj20. Aquatic food items provided hominins with a valuable nutritional alternative to an exclusively terrestrial resource base. We argue that specific advantages afforded by an aquatic alternative to terrestrial resources include (1) a probable reduction in required investment of energy relative to economic return in the form of nutritionally dense food items, (2) a decrease in the technological costs of resource acquisition, and (3) a reduced level of inter-specific competition associated with carcass access and an associated reduction of predation risk relative to terrestrial sources of food. The combined evidence from FwJj20 suggests that aquatic resources may have played a substantial role in early Pleistocene diets and these resources may have been overlooked in previous interpretations of hominin behavior.


PLOS ONE | 2015

Diachronic change within the Still Bay at Blombos Cave, South Africa

Will Archer; Philipp Gunz; Karen L. van Niekerk; Christopher S. Henshilwood; Shannon P. McPherron

Characteristically shaped bifacial points are stone artefacts with which the Middle Stone Age Still Bay techno-complex in Southern Africa is identified. Traditional approaches such as chaîne opératoire and two-dimensional metrics in combination with attribute analyses have been used to analyse variability within Still Bay point assemblages. Here we develop a protocol to extract and analyse high resolution 3-dimensional geometric morphometric information about Still Bay point morphology. We also investigate ways in which the independent variables of time, raw-material and tool size may be driving patterns of shape variation in the Blombos Cave point assemblage. We demonstrate that at a single, stratified Still Bay site points undergo significant modal changes in tool morphology and standardization. Our results caution against (1) treatment of the Still Bay as a static technological entity and (2) drawing demographic inferences stemming from grouping Still Bay point collections within the same cultural label.


PLOS ONE | 2014

Quantifying Traces of Tool Use: A Novel Morphometric Analysis of Damage Patterns on Percussive Tools

Matthew V. Caruana; Susana Carvalho; David R. Braun; Darya Presnyakova; Michael Haslam; Will Archer; René Bobe; John W. K. Harris

Percussive technology continues to play an increasingly important role in understanding the evolution of tool use. Comparing the archaeological record with extractive foraging behaviors in nonhuman primates has focused on percussive implements as a key to investigating the origins of lithic technology. Despite this, archaeological approaches towards percussive tools have been obscured by a lack of standardized methodologies. Central to this issue have been the use of qualitative, non-diagnostic techniques to identify percussive tools from archaeological contexts. Here we describe a new morphometric method for distinguishing anthropogenically-generated damage patterns on percussive tools from naturally damaged river cobbles. We employ a geomatic approach through the use of three-dimensional scanning and geographical information systems software to statistically quantify the identification process in percussive technology research. This will strengthen current technological analyses of percussive tools in archaeological frameworks and open new avenues for translating behavioral inferences of early hominins from percussive damage patterns.


PLOS ONE | 2013

Investigating the signature of aquatic resource use within Pleistocene hominin dietary adaptations.

Will Archer; David R. Braun

There is general agreement that the diet of early hominins underwent dramatic changes shortly after the appearance of stone tools in the archaeological record. It is often assumed that this change is associated with dietary expansion to incorporate large mammal resources. Although other aspects of the hominin diet, such as aquatic or vegetal resources, are assumed to be a part of hominin subsistence, identifying evidence of these adaptations has proved difficult. Here we present a series of analyses that provide methodological support for the inclusion of aquatic resources in hominin dietary reconstructions. We suggest that bone surface modifications in aquatic species are morphologically distinguishable from bone surface modifications on terrestrial taxa. We relate these findings to differences that we document in the surface mechanical properties of the two types of bone, as reflected by significant differences in bone surface microhardness values between aquatic and terrestrial species. We hypothesize that the characteristics of bone surface modifications on aquatic taxa inhibit the ability of zooarchaeologists to consistently diagnose them correctly. Contingently, this difficulty influences correspondence levels between zooarchaeologists, and may therefore result in misinterpretation of the taphonomic history of early Pleistocene aquatic faunal assemblages. A blind test using aquatic specimens and a select group of 9 experienced zooarchaeologists as participants was designed to test this hypothesis. Investigation of 4 different possible explanations for blind test results suggest the dominant factors explaining patterning relate to (1) the specific methodologies employed to diagnose modifications on aquatic specimens and (2) the relative experience of participants with modifications on aquatic bone surfaces. Consequently we argue that an important component of early hominin diets may have hitherto been overlooked as a result of (a) the paucity of referential frameworks within which to identify such a component and (b) the inability of applied identification methodologies to consistently do so.


Interface Focus | 2016

Cut marks on bone surfaces: influences on variation in the form of traces of ancient behaviour

David R. Braun; Michael C. Pante; Will Archer

Although we know that our lineage has been producing sharp-edged tools for over 2.6 Myr, our knowledge of what they were doing with these tools is far less complete. Studies of these sharp-edged stone tools show that they were most probably used as cutting implements. However, the only substantial evidence of this is the presence of cut marks on the bones of animals found in association with stone tools in ancient deposits. Numerous studies have aimed to quantify the frequency and placement of these marks. At present there is little consensus on the meaning of these marks and how the frequency relates to specific behaviours in the past. Here we investigate the possibility that mechanical properties associated with edges of stone tools as well as the properties of bones themselves may contribute to the overall morphology of these marks and ultimately their placement in the archaeological record. Standardized tests of rock mechanics (Youngs modulus and Vickers hardness) indicate that the hardness of tool edges significantly affects cut-mark morphology. In addition, we show that indentation hardness of bones also impacts the overall morphology of cut marks. Our results show that rock type and bone portions influence the shape and prevalence of cut marks on animal bones.


Scientific Reports | 2015

Earliest evidence of dental caries manipulation in the Late Upper Palaeolithic

Gregorio Oxilia; Marco Peresani; Matteo Romandini; Chiara Matteucci; Cynthianne Debono Spiteri; Amanda G. Henry; Dieter Schulz; Will Archer; Jacopo Crezzini; Francesco Boschin; Paolo Boscato; Klervia Jaouen; Tamara Dogandzic; Alberto Broglio; Jacopo Moggi-Cecchi; Luca Fiorenza; Jean-Jacques Hublin; Ottmar Kullmer; Stefano Benazzi

Prehistoric dental treatments were extremely rare, and the few documented cases are known from the Neolithic, when the adoption of early farming culture caused an increase of carious lesions. Here we report the earliest evidence of dental caries intervention on a Late Upper Palaeolithic modern human specimen (Villabruna) from a burial in Northern Italy. Using Scanning Electron Microscopy we show the presence of striations deriving from the manipulation of a large occlusal carious cavity of the lower right third molar. The striations have a “V”-shaped transverse section and several parallel micro-scratches at their base, as typically displayed by cutmarks on teeth. Based on in vitro experimental replication and a complete functional reconstruction of the Villabruna dental arches, we confirm that the identified striations and the associated extensive enamel chipping on the mesial wall of the cavity were produced ante-mortem by pointed flint tools during scratching and levering activities. The Villabruna specimen is therefore the oldest known evidence of dental caries intervention, suggesting at least some knowledge of disease treatment well before the Neolithic. This study suggests that primitive forms of carious treatment in human evolution entail an adaptation of the well-known toothpicking for levering and scratching rather than drilling practices.


Nature Communications | 2018

78,000-year-old record of Middle and Later stone age innovation in an East African tropical forest

Ceri Shipton; Patrick Roberts; Will Archer; Simon J. Armitage; Caesar Bita; James Blinkhorn; Colin Courtney-Mustaphi; Alison Crowther; Richard Curtis; Francesco d’Errico; Katerina Douka; Patrick Faulkner; Huw S. Groucutt; Richard Helm; Andy I.R. Herries; Severinus Jembe; Nikos Kourampas; Julia A. Lee-Thorp; Rob Marchant; Julio Mercader; Africa Pitarch Martí; Mary E. Prendergast; Ben Rowson; Amini Tengeza; Ruth Tibesasa; Tom S. White; Michael D. Petraglia; Nicole Boivin

The Middle to Later Stone Age transition in Africa has been debated as a significant shift in human technological, cultural, and cognitive evolution. However, the majority of research on this transition is currently focused on southern Africa due to a lack of long-term, stratified sites across much of the African continent. Here, we report a 78,000-year-long archeological record from Panga ya Saidi, a cave in the humid coastal forest of Kenya. Following a shift in toolkits ~67,000 years ago, novel symbolic and technological behaviors assemble in a non-unilinear manner. Against a backdrop of a persistent tropical forest-grassland ecotone, localized innovations better characterize the Late Pleistocene of this part of East Africa than alternative emphases on dramatic revolutions or migrations.Most of the archaeological record of the Middle to Later Stone Age transition comes from southern Africa. Here, Shipton et al. describe the new site Panga ya Saidi on the coast of Kenya that covers the last 78,000 years and shows gradual cultural and technological change in the Late Pleistocene.


PLOS ONE | 2015

Documenting differences between early stone age flake production systems: An experimental model and archaeological verification

Darya Presnyakova; Will Archer; David R. Braun; Wesley Flear

This study investigates morphological differences between flakes produced via “core and flake” technologies and those resulting from bifacial shaping strategies. We investigate systematic variation between two technological groups of flakes using experimentally produced assemblages, and then apply the experimental model to the Cutting 10 Mid -Pleistocene archaeological collection from Elandsfontein, South Africa. We argue that a specific set of independent variables—and their interactions—including external platform angle, platform depth, measures of thickness variance and flake curvature should distinguish between these two technological groups. The role of these variables in technological group separation was further investigated using the Generalized Linear Model as well as Linear Discriminant Analysis. The Discriminant model was used to classify archaeological flakes from the Cutting 10 locality in terms of their probability of association, within either experimentally developed technological group. The results indicate that the selected independent variables play a central role in separating core and flake from bifacial technologies. Thickness evenness and curvature had the greatest effect sizes in both the Generalized Linear and Discriminant models. Interestingly the interaction between thickness evenness and platform depth was significant and played an important role in influencing technological group membership. The identified interaction emphasizes the complexity in attempting to distinguish flake production strategies based on flake morphological attributes. The results of the discriminant function analysis demonstrate that the majority of flakes at the Cutting 10 locality were not associated with the production of the numerous Large Cutting Tools found at the site, which corresponds with previous suggestions regarding technological behaviors reflected in this assemblage.


Archaeological and Anthropological Sciences | 2017

A geometric morphometric relationship predicts stone flake shape and size variability

Will Archer; Cornel Pop; Zeljko Rezek; Stefan Schlager; Sam C. Lin; Marcel Weiss; Tamara Dogandžic; Dawit Desta; Shannon P. McPherron

The archaeological record represents a window onto the complex relationship between stone artefact variance and hominin behaviour. Differences in the shapes and sizes of stone flakes—the most abundant remains of past behaviours for much of human evolutionary history—may be underpinned by variation in a range of different environmental and behavioural factors. Controlled flake production experiments have drawn inferences between flake platform preparation behaviours, which have thus far been approximated by linear measurements, and different aspects of overall stone flake variability (Dibble and Rezek J Archaeol Sci 36:1945–1954, 2009; Lin et al. Am Antiq 724–745, 2013; Magnani et al. J Archaeol Sci 46:37–49, 2014; Rezek et al. J Archaeol Sci 38:1346–1359, 2011). However, when the results are applied to archaeological assemblages, there remains a substantial amount of unexplained variability. It is unclear whether this disparity between explanatory models and archaeological data is a result of measurement error on certain key variables, whether traditional analyses are somehow a general limiting factor, or whether there are additional flake shape and size drivers that remain unaccounted for. To try and circumvent these issues, here, we describe a shape analysis approach to assessing stone flake variability including a newly developed three-dimensional geometric morphometric method (‘3DGM’). We use 3DGM to demonstrate that a relationship between platform and flake body governs flake shape and size variability. Contingently, we show that by using this 3DGM approach, we can use flake platform attributes to both (1) make fairly accurate stone flake size predictions and (2) make relatively detailed predictions of stone flake shape. Whether conscious or instinctive, an understanding of this geometric relationship would have been critical to past knappers effectively controlling the production of desired stone flakes. However, despite being able to holistically and accurately incorporate three-dimensional flake variance into our analyses, the behavioural drivers of this variance remain elusive.


Nature Communications | 2018

Publisher Correction: 78,000-year-old record of Middle and Later Stone Age innovation in an East African tropical forest

Ceri Shipton; Patrick Roberts; Will Archer; Simon J. Armitage; Caesar Bita; James Blinkhorn; Colin Courtney-Mustaphi; Alison Crowther; Richard Curtis; Francesco d’Errico; Katerina Douka; Patrick Faulkner; Huw S. Groucutt; Richard Helm; Andy I.R. Herries; Severinus Jembe; Nikos Kourampas; Julia A. Lee-Thorp; Rob Marchant; Julio Mercader; Africa Pitarch Martí; Mary E. Prendergast; Ben Rowson; Amini Tengeza; Ruth Tibesasa; Tom S. White; Michael D. Petraglia; Nicole Boivin

The originally published version of this Article contained an error in Fig. 3, whereby an additional unrelated graph was overlaid on top of the magnetic susceptibility plot. Furthermore, the Article title contained an error in the capitalisation of ‘Stone Age’. Both of these errors have now been corrected in both the PDF and HTML versions of the Article.

Collaboration


Dive into the Will Archer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam C. Lin

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge