Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Will Roeffen is active.

Publication


Featured researches published by Will Roeffen.


The New England Journal of Medicine | 2009

Protection against a Malaria Challenge by Sporozoite Inoculation

Meta Roestenberg; Matthew McCall; Joost Hopman; Jorien Wiersma; Adrian J. F. Luty; Geert Jan van Gemert; Marga van de Vegte-Bolmer; Ben C. L. van Schaijk; Karina Teelen; Theo Arens; Lopke Spaarman; Quirijn de Mast; Will Roeffen; Georges Snounou; Laurent Rénia; Andre van der Ven; Cornelus C. Hermsen; Robert W. Sauerwein

BACKGROUND An effective vaccine for malaria is urgently needed. Naturally acquired immunity to malaria develops slowly, and induction of protection in humans can be achieved artificially by the inoculation of radiation-attenuated sporozoites by means of more than 1000 infective mosquito bites. METHODS We exposed 15 healthy volunteers--with 10 assigned to a vaccine group and 5 assigned to a control group--to bites of mosquitoes once a month for 3 months while they were receiving a prophylactic regimen of chloroquine. The vaccine group was exposed to mosquitoes that were infected with Plasmodium falciparum, and the control group was exposed to mosquitoes that were not infected with the malaria parasite. One month after the discontinuation of chloroquine, protection was assessed by homologous challenge with five mosquitoes infected with P. falciparum. We assessed humoral and cellular responses before vaccination and before the challenge to investigate correlates of protection. RESULTS All 10 subjects in the vaccine group were protected against a malaria challenge with the infected mosquitoes. In contrast, patent parasitemia (i.e., parasites found in the blood on microscopical examination) developed in all five control subjects. Adverse events were mainly reported by vaccinees after the first immunization and by control subjects after the challenge; no serious adverse events occurred. In this model, we identified the induction of parasite-specific pluripotent effector memory T cells producing interferon-gamma, tumor necrosis factor alpha, and interleukin-2 as a promising immunologic marker of protection. CONCLUSIONS Protection against a homologous malaria challenge can be induced by the inoculation of intact sporozoites. (ClinicalTrials.gov number, NCT00442377.)


PLOS ONE | 2009

Substantial Contribution of Submicroscopical Plasmodium falciparum Gametocyte Carriage to the Infectious Reservoir in an Area of Seasonal Transmission

André Lin Ouédraogo; Teun Bousema; Petra Schneider; Sake J. de Vlas; Edith Ilboudo-Sanogo; Nadine Cuzin-Ouattara; Issa Nebie; Will Roeffen; Jan Peter Verhave; Adrian J. F. Luty; Robert W. Sauerwein

Background Man to mosquito transmission of malaria depends on the presence of the sexual stage parasites, gametocytes, that often circulate at low densities. Gametocyte densities below the microscopical threshold of detection may be sufficient to infect mosquitoes but the importance of submicroscopical gametocyte carriage in different transmission settings is unknown. Methodology/Principal Findings Membrane feeding experiments were carried out on 80 children below 14 years of age at the end of the wet season in an area of seasonal malaria transmission in Burkina Faso. Gametocytes were quantified by microscopy and by Pfs25-based quantitative nucleic acid sequence-based amplification assay (QT-NASBA). The childrens infectiousness was determined by membrane feeding experiments in which a venous blood sample was offered to locally reared Anopheles mosquitoes. Gametocytes were detected in 30.0% (24/80) of the children by microscopy compared to 91.6% (65/71) by QT-NASBA (p<0.001). We observed a strong association between QT-NASBA gametocyte density and infection rates (p = 0.007). Children with microscopically detectable gametocytes were more likely to be infectious (68.2% compared to 31.7% of carriers of submicroscopical gametocytes, p = 0.001), and on average infected more mosquitoes (13.2% compared to 2.3%, p<0.001). However, because of the high prevalence of submicroscopical gametocyte carriage in the study population, carriers of sub-microscopical gametocytes were responsible for 24.2% of the malaria transmission in this population. Conclusions/Significance Submicroscopical gametocyte carriage is common in an area of seasonal transmission in Burkina Faso and contributes substantially to the human infectious reservoir. Submicroscopical gametocyte carriage should therefore be considered when implementing interventions that aim to reduce malaria transmission.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Correctly folded Pfs48/45 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in mice

Nikolay S. Outchkourov; Will Roeffen; Anita M. Kaan; Josephine Jansen; Adrian J. F. Luty; Danielle Schuiffel; Geert Jan van Gemert; Marga van de Vegte-Bolmer; Robert W. Sauerwein; Hendrik G. Stunnenberg

Malaria kills >1 million people each year, in particular in sub-Saharan Africa. Although asexual forms are directly responsible for disease and death, sexual stages account for the transmission of Plasmodium parasites from human to the mosquito vector and therefore the spread of the parasite in the population. Development of a malaria vaccine is urgently needed to reduce morbidity and mortality. Vaccines against sexual stages of Plasmodium falciparum are meant to decrease the force of transmission and consequently reduce malaria burden. Pfs48/45 is specifically expressed in sexual stages and is a well established transmission-blocking (TB) vaccine candidate. However, production of correctly folded recombinant Pfs48/45 protein with display of its TB epitopes has been a major challenge. Here, we show the production of a properly folded Pfs48/45 C-terminal fragment by simultaneous coexpression with four periplasmic folding catalysts in Escherichia coli. This C-terminal fragment fused to maltose binding protein was produced at medium scale with >90% purity and a stability over at least a 9-month period. It induces uniform and high antibody titers in mice and elicits functional TB antibodies in standard membrane feeding assays in 90% of the immunized mice. Our data provide a clear perspective on the clinical development of a Pfs48/45-based TB malaria vaccine.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity

Else M. Bijker; Guido J. H. Bastiaens; Anne C. Teirlinck; Geert-Jan van Gemert; Wouter Graumans; Marga van de Vegte-Bolmer; Rianne Siebelink-Stoter; Theo Arens; Karina Teelen; Wiebke Nahrendorf; Edmond J. Remarque; Will Roeffen; Annemieke Jansens; Dunja Zimmerman; Martijn W. Vos; Ben C. L. van Schaijk; Jorien Wiersma; Andre van der Ven; Quirijn de Mast; Lisette van Lieshout; Jaco J. Verweij; Cornelus C. Hermsen; Anja Scholzen; Robert W. Sauerwein

Volunteers immunized under chloroquine chemoprophylaxis with Plasmodium falciparum sporozoites (CPS) develop complete, long-lasting protection against homologous sporozoite challenge. Chloroquine affects neither sporozoites nor liver-stages, but kills only asexual forms in erythrocytes once released from the liver into the circulation. Consequently, CPS immunization exposes the host to antigens from both preerythrocytic and blood stages, and induced immunity might target either of these stages. We therefore explored the life cycle stage specificity of CPS-induced protection. Twenty-five malaria-naïve volunteers were enrolled in a clinical trial, 15 of whom received CPS immunization. Five immunized subjects and five controls received a sporozoite challenge by mosquito bites, whereas nine immunized and five control subjects received an i.v. challenge with P. falciparum-infected erythrocytes. The latter approach completely bypasses preerythrocytic stages, enabling a direct comparison of protection against either life cycle stage. CPS-immunized subjects (13 of 14) developed anticircumsporozoite antibodies, whereas only one volunteer generated minimal titers against typical blood-stage antigens. IgG from CPS-immunized volunteers did not inhibit asexual blood-stage growth in vitro. All CPS-immunized subjects (5 of 5) were protected against sporozoite challenge. In contrast, nine of nine CPS-immunized subjects developed parasitemia after blood-stage challenge, with identical prepatent periods and blood-stage multiplication rates compared with controls. Intravenously challenged CPS-immunized subjects showed earlier fever and increased plasma concentrations of inflammatory markers D-dimer, IFN-γ, and monokine induced by IFN-γ than i.v. challenged controls. The complete lack of protection against blood-stage challenge indicates that CPS-induced protection is mediated by immunity against preerythrocytic stages. However, evidence is presented for immune recognition of P. falciparum-infected erythrocytes, suggesting memory responses unable to generate functional immunity.


PLOS ONE | 2012

Mosquito Feeding Assays to Determine the Infectiousness of Naturally Infected Plasmodium falciparum Gametocyte Carriers

Teun Bousema; Rhoel R. Dinglasan; Isabelle Morlais; Louis C. Gouagna; Travis van Warmerdam; Parfait Awono-Ambene; Sarah Bonnet; Mouctar Diallo; Mamadou Coulibaly; Timoléon Tchuinkam; Bert Mulder; Geoff Targett; Chris Drakeley; Colin J. Sutherland; Vincent Robert; Ogobara K. Doumbo; Yeya Tiemoko Touré; Patricia M. Graves; Will Roeffen; Robert W. Sauerwein; Ashley Birkett; Emily Locke; Merribeth J. Morin; Yimin Wu; Thomas S. Churcher

Introduction In the era of malaria elimination and eradication, drug-based and vaccine-based approaches to reduce malaria transmission are receiving greater attention. Such interventions require assays that reliably measure the transmission of Plasmodium from humans to Anopheles mosquitoes. Methods We compared two commonly used mosquito feeding assay procedures: direct skin feeding assays and membrane feeding assays. Three conditions under which membrane feeding assays are performed were examined: assays with i) whole blood, ii) blood pellets resuspended with autologous plasma of the gametocyte carrier, and iii) blood pellets resuspended with heterologous control serum. Results 930 transmission experiments from Cameroon, The Gambia, Mali and Senegal were included in the analyses. Direct skin feeding assays resulted in higher mosquito infection rates compared to membrane feeding assays (odds ratio 2.39, 95% confidence interval 1.94–2.95) with evident heterogeneity between studies. Mosquito infection rates in membrane feeding assays and direct skin feeding assays were strongly correlated (p<0.0001). Replacing the plasma of the gametocyte donor with malaria naïve control serum resulted in higher mosquito infection rates compared to own plasma (OR 1.92, 95% CI 1.68–2.19) while the infectiousness of gametocytes may be reduced during the replacement procedure (OR 0.60, 95% CI 0.52–0.70). Conclusions Despite a higher efficiency of direct skin feeding assays, membrane feeding assays appear suitable tools to compare the infectiousness between individuals and to evaluate transmission-reducing interventions. Several aspects of membrane feeding procedures currently lack standardization; this variability makes comparisons between laboratories challenging and should be addressed to facilitate future testing of transmission-reducing interventions.


PLOS ONE | 2008

Safety and Immunogenicity of a Recombinant Plasmodium falciparum AMA1 Malaria Vaccine Adjuvanted with Alhydrogel™, Montanide ISA 720 or AS02

Meta Roestenberg; Ed Remarque; Erik de Jonge; Rob Hermsen; Hildur E. Blythman; Odile Leroy; Egeruan B. Imoukhuede; Søren Jepsen; Opokua Ofori-Anyinam; Bart W. Faber; Clemens H. M. Kocken; Miranda Arnold; Vanessa Walraven; Karina Teelen; Will Roeffen; Quirijn de Mast; W. Ripley Ballou; Joe Cohen; Marie-Claude Dubois; Stéphane Ascarateil; Andre van der Ven; Alan W. Thomas; Robert W. Sauerwein

Background Plasmodium falciparum Apical Membrane Antigen 1 (PfAMA1) is a candidate vaccine antigen expressed by merozoites and sporozoites. It plays a key role in red blood cell and hepatocyte invasion that can be blocked by antibodies. Methodology/Principal Findings We assessed the safety and immunogenicity of recombinant PfAMA1 in a dose-escalating, phase Ia trial. PfAMA1 FVO strain, produced in Pichia pastoris, was reconstituted at 10 µg and 50 µg doses with three different adjuvants, Alhydrogel™, Montanide ISA720 and AS02 Adjuvant System. Six randomised groups of healthy male volunteers, 8–10 volunteers each, were scheduled to receive three immunisations at 4-week intervals. Safety and immunogenicity data were collected over one year. Transient pain was the predominant injection site reaction (80–100%). Induration occurred in the Montanide 50 µg group, resulting in a sterile abscess in two volunteers. Systemic adverse events occurred mainly in the AS02 groups lasting for 1–2 days. Erythema was observed in 22% of Montanide and 59% of AS02 group volunteers. After the second dose, six volunteers in the AS02 group and one in the Montanide group who reported grade 3 erythema (>50 mm) were withdrawn as they met the stopping criteria. All adverse events resolved. There were no vaccine-related serious adverse events. Humoral responses were highest in the AS02 groups. Antibodies showed activity in an in vitro growth inhibition assay up to 80%. Upon stimulation with the vaccine, peripheral mononuclear cells from all groups proliferated and secreted IFNγ and IL-5 cytokines. Conclusions/Significance All formulations showed distinct reactogenicity profiles. All formulations with PfAMA1 were immunogenic and induced functional antibodies. Trial Registration Clinicaltrials.gov NCT00730782


PLOS ONE | 2009

The Quantity and Quality of African Children's IgG Responses to Merozoite Surface Antigens Reflect Protection against Plasmodium falciparum Malaria

David Courtin; Mayke Oesterholt; Harm Huismans; Kwadwo A Kusi; Jacqueline Milet; Cyril Badaut; Oumar Gaye; Will Roeffen; Edmond J. Remarque; Robert W. Sauerwein; André Garcia; Adrian J. F. Luty

Background Antibodies, particularly cytophilic IgG subclasses, with specificity for asexual blood stage antigens of Plasmodium falciparum, are thought to play an important role in acquired immunity to malaria. Evaluating such responses in longitudinal sero-epidemiological field studies, allied to increasing knowledge of the immunological mechanisms associated with anti-malarial protection, will help in the development of malaria vaccines. Methods and Findings We conducted a 1-year follow-up study of 305 Senegalese children and identified those resistant or susceptible to malaria. In retrospective analyses we then compared post-follow-up IgG responses to six asexual-stage candidate malaria vaccine antigens in groups of individuals with clearly defined clinical and parasitological histories of infection with P. falciparum. In age-adjusted analyses, children resistant to malaria as well as to high-density parasitemia, had significantly higher IgG1 responses to GLURP and IgG3 responses to MSP2 than their susceptible counterparts. Among those resistant to malaria, high anti-MSP1 IgG1 levels were associated with protection against high-density parasitemia. To assess functional attributes, we used an in vitro parasite growth inhibition assay with purified IgG. Samples from individuals with high levels of IgG directed to MSP1, MSP2 and AMA1 gave the strongest parasite growth inhibition, but a marked age-related decline was observed in these effects. Conclusion Our data are consistent with the idea that protection against P. falciparum malaria in children depends on acquisition of a constellation of appropriate, functionally active IgG subclass responses directed to multiple asexual stage antigens. Our results suggest at least two distinct mechanisms via which antibodies may exert protective effects. Although declining with age, the growth inhibitory effects of purified IgG measurable in vitro reflected levels of anti-AMA1, -MSP1 and -MSP2, but not of anti-GLURP IgG. The latter could act on parasite growth via indirect parasiticidal pathways.


Parasite Immunology | 1996

Association between anti‐Pfs48/45 reactivity and P. falciparum transmission‐blocking activity in sera from Cameroon

Will Roeffen; B. Mulder; Karina Teelen; M. Bolmer; Wijnand Eling; Geoffrey Targett; P. J. A. Beckers; Robert W. Sauerwein

Pfs48/45, a sexual stage parasite protein doublet of P. falciparum, is a target of antibodies which inhibit the development of the parasite in the mosquito. Twenty‐eight (54%) out of 52 sera of gametocyte carriers from Cameroon reduced infectivity in the mosquito membrane feeding bioassay to less than 20% of the controls. These 52 sera were analysed by competition ELISAs for the presence of antibodies capable of competing the binding of six monoclonal antibodies (MoAbs) directed against five different epitopes on Pfs48/45. The percentage of these 52 Cameroon sera that competed with one of the MoAbs ranged from 13% (epitope I) to 33% (epitope IIc). Comparison of activity in the transmission‐blocking assay ( ≥80%) and in the Pfs48/45 competition ELISA show a relative specificity of 100% (24 of 24) and a relative sensitivity of 75% (21 of 28). Non‐blocking sera showed no competition with any of the MoAbs. These MoAbs were further used to study the diversity of epitopes among isolates of P. falciparum using a two‐site ELISA. MoAbs against epitope I, III and V reacted with four different isolates whereas epitope II could be subdivided into three epitopes. None of the isolates reacted with MoAb 3G12 (epitope IV). Using these four different isolates, the competition ELISA titre varies from 1/20 to 1/80 and no significant differences are found between the isolates except for epitope II where only three out of 11 positives for epitope IIa were also positive for epitope IIc.


Vaccine | 2014

A multi-stage malaria vaccine candidate targeting both transmission and asexual parasite life-cycle stages.

Michael Theisen; Will Roeffen; Susheel K. Singh; Gorm Andersen; Linda Eva Amoah; M.G. van de Vegte-Bolmer; Theo Arens; Régis Wendpayangde Tiendrebeogo; Sophie Jones; Teun Bousema; B. Adu; M.H. Dziegiel; Michael Christiansen; Robert W. Sauerwein

Effective control and eventual eradication of malaria drives the imperative need for clinical development of a malaria vaccine. Asexual parasite forms are responsible for clinical disease and death while apathogenic gametocytes are responsible for transmission from man to mosquito. Vaccines that combine antigens from both stages may provide direct protection and indirect benefit by reducing the force of infection. We constructed a chimeric antigen composed of a fragment of the Plasmodium falciparum (Pf) glutamate-rich protein fused in frame to a correctly folded fragment of Pfs48/45. The chimera was produced in Lactococcus lactis and induced robust antibody responses in rodents to the individual components. Specific antibodies showed strong transmission blocking activity against multiple Pf-strains in the standard membrane feeding assay and functional activity against asexual stages in the antibody dependent cellular inhibition assay. The combined data provide a strong rationale for entering the next phase of clinical grade production and testing.


PLOS ONE | 2013

A Plant-Produced Pfs25 VLP Malaria Vaccine Candidate Induces Persistent Transmission Blocking Antibodies against Plasmodium falciparum in Immunized Mice

R. Mark Jones; Jessica A. Chichester; Vadim Mett; Jennifer Jaje; Stephen Tottey; Slobodanka Manceva; Louis J. Casta; Sandra K. Gibbs; Konstantin Musiychuk; Moneim Shamloul; Joey Norikane; Valentina Mett; Stephen J. Streatfield; Marga van de Vegte-Bolmer; Will Roeffen; Robert W. Sauerwein; Vidadi Yusibov

Malaria transmission blocking vaccines (TBVs) are considered an effective means to control and eventually eliminate malaria. The Pfs25 protein, expressed predominantly on the surface of the sexual and sporogonic stages of Plasmodium falciparum including gametes, zygotes and ookinetes, is one of the primary targets for TBV. It has been demonstrated that plants are an effective, highly scalable system for the production of recombinant proteins, including virus-like particles (VLPs). We engineered VLPs (Pfs25-CP VLP) comprising Pfs25 fused to the Alfalfa mosaic virus coat protein (CP) and produced these non-enveloped hybrid VLPs in Nicotiana benthamiana plants using a Tobacco mosaic virus-based ‘launch’ vector. Purified Pfs25-CP VLPs were highly consistent in size (19.3±2.4 nm in diameter) with an estimated 20–30% incorporation of Pfs25 onto the VLP surface. Immunization of mice with one or two doses of Pfs25-CP VLPs plus Alhydrogel® induced serum antibodies with complete transmission blocking activity through the 6 month study period. These results support the evaluation of Pfs25-CP VLP as a potential TBV candidate and the feasibility of the ‘launch’ vector technology for the production of VLP-based recombinant vaccines against infectious diseases.

Collaboration


Dive into the Will Roeffen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teun Bousema

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Karina Teelen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wijnand Eling

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Susheel K. Singh

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

André Lin Ouédraogo

Radboud University Nijmegen Medical Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge