Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Will Steffen is active.

Publication


Featured researches published by Will Steffen.


Nature | 2009

A safe operating space for humanity

Johan Rockström; Will Steffen; Kevin J. Noone; Åsa Persson; F. Stuart Chapin; Eric F. Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry P. Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James E. Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul J. Crutzen; Jonathan A. Foley

Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.


Global Environmental Change-human and Policy Dimensions | 2001

The causes of land-use and land-cover change: moving beyond the myths

Eric F. Lambin; Barry Turner; Helmut J. Geist; Samuel Babatunde Agbola; Arild Angelsen; John W. Bruce; Oliver T. Coomes; Rodolfo Dirzo; G. Fischer; Carl Folke; P.S. George; Katherine Homewood; Jacques Imbernon; Rik Leemans; Xiubin Li; Emilio F. Moran; Michael Mortimore; P.S. Ramakrishnan; John F. Richards; Helle Skånes; Will Steffen; Glenn Davis Stone; Uno Svedin; Tom Veldkamp; Coleen Vogel; Jianchu Xu

Common understanding of the causes of land-use and land-cover change is dominated by simplifications which, in turn, underlie many environment-development policies. This article tracks some of the major myths on driving forces of land-cover change and proposes alternative pathways of change that are better supported by case study evidence. Cases reviewed support the conclusion that neither population nor poverty alone constitute the sole and major underlying causes of land-cover change worldwide. Rather, peoples’ responses to economic opportunities, as mediated by institutional factors, drive land-cover changes. Opportunities and


AMBIO: A Journal of the Human Environment | 2007

The Anthropocene: are humans now overwhelming the great forces of Nature?

Will Steffen; Paul J. Crutzen; J. R. McNeill

Abstract We explore the development of the Anthropocene, the current epoch in which humans and our societies have become a global geophysical force. The Anthropocene began around 1800 with the onset of industrialization, the central feature of which was the enormous expansion in the use of fossil fuels. We use atmospheric carbon dioxide concentration as a single, simple indicator to track the progression of the Anthropocene. From a preindustrial value of 270–275 ppm, atmospheric carbon dioxide had risen to about 310 ppm by 1950. Since then the human enterprise has experienced a remarkable explosion, the Great Acceleration, with significant consequences for Earth System functioning. Atmospheric CO2 concentration has risen from 310 to 380 ppm since 1950, with about half of the total rise since the preindustrial era occurring in just the last 30 years. The Great Acceleration is reaching criticality. Whatever unfolds, the next few decades will surely be a tipping point in the evolution of the Anthropocene.


Nature | 2001

Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems

David S. Schimel; Joanna Isobel House; K. Hibbard; P. Bousquet; Philippe Ciais; Philippe Peylin; Bobby H. Braswell; Mike Apps; D. F. Baker; Alberte Bondeau; Josep G. Canadell; Galina Churkina; Wolfgang Cramer; A. S. Denning; Christopher B. Field; Pierre Friedlingstein; Christine L. Goodale; Martin Heimann; R. A. Houghton; Jerry M. Melillo; Berrien Moore; Daniel Murdiyarso; Ian R. Noble; Stephen W. Pacala; I. C. Prentice; M. R. Raupach; P. J. Rayner; Robert J. Scholes; Will Steffen; Christian Wirth

Knowledge of carbon exchange between the atmosphere, land and the oceans is important, given that the terrestrial and marine environments are currently absorbing about half of the carbon dioxide that is emitted by fossil-fuel combustion. This carbon uptake is therefore limiting the extent of atmospheric and climatic change, but its long-term nature remains uncertain. Here we provide an overview of the current state of knowledge of global and regional patterns of carbon exchange by terrestrial ecosystems. Atmospheric carbon dioxide and oxygen data confirm that the terrestrial biosphere was largely neutral with respect to net carbon exchange during the 1980s, but became a net carbon sink in the 1990s. This recent sink can be largely attributed to northern extratropical areas, and is roughly split between North America and Eurasia. Tropical land areas, however, were approximately in balance with respect to carbon exchange, implying a carbon sink that offset emissions due to tropical deforestation. The evolution of the terrestrial carbon sink is largely the result of changes in land use over time, such as regrowth on abandoned agricultural land and fire prevention, in addition to responses to environmental changes, such as longer growing seasons, and fertilization by carbon dioxide and nitrogen. Nevertheless, there remain considerable uncertainties as to the magnitude of the sink in different regions and the contribution of different processes.


Philosophical Transactions of the Royal Society A | 2011

The anthropocene: Conceptual and historical perspectives

Will Steffen; Jacques Grinevald; Paul J. Crutzen; J. R. McNeill

The human imprint on the global environment has now become so large and active that it rivals some of the great forces of Nature in its impact on the functioning of the Earth system. Although global-scale human influence on the environment has been recognized since the 1800s, the term Anthropocene, introduced about a decade ago, has only recently become widely, but informally, used in the global change research community. However, the term has yet to be accepted formally as a new geological epoch or era in Earth history. In this paper, we put forward the case for formally recognizing the Anthropocene as a new epoch in Earth history, arguing that the advent of the Industrial Revolution around 1800 provides a logical start date for the new epoch. We then explore recent trends in the evolution of the Anthropocene as humanity proceeds into the twenty-first century, focusing on the profound changes to our relationship with the rest of the living world and on early attempts and proposals for managing our relationship with the large geophysical cycles that drive the Earth’s climate system.


web science | 2011

The Anthropocene: From Global Change to Planetary Stewardship

Will Steffen; Åsa Persson; Lisa Deutsch; Jan Zalasiewicz; Mark Williams; Katherine Richardson; Carole L. Crumley; Paul J. Crutzen; Carl Folke; Line J. Gordon; Mario J. Molina; V. Ramanathan; Johan Rockström; Marten Scheffer; Hans Joachim Schellnhuber; Uno Svedin

Over the past century, the total material wealth of humanity has been enhanced. However, in the twenty-first century, we face scarcity in critical resources, the degradation of ecosystem services, and the erosion of the planet’s capability to absorb our wastes. Equity issues remain stubbornly difficult to solve. This situation is novel in its speed, its global scale and its threat to the resilience of the Earth System. The advent of the Anthropence, the time interval in which human activities now rival global geophysical processes, suggests that we need to fundamentally alter our relationship with the planet we inhabit. Many approaches could be adopted, ranging from geo-engineering solutions that purposefully manipulate parts of the Earth System to becoming active stewards of our own life support system. The Anthropocene is a reminder that the Holocene, during which complex human societies have developed, has been a stable, accommodating environment and is the only state of the Earth System that we know for sure can support contemporary society. The need to achieve effective planetary stewardship is urgent. As we go further into the Anthropocene, we risk driving the Earth System onto a trajectory toward more hostile states from which we cannot easily return.


Trends in Ecology and Evolution | 2010

Ecosystem Stewardship: Sustainability Strategies for a Rapidly Changing Planet

F. Stuart Chapin; Stephen R. Carpenter; Gary P. Kofinas; Carl Folke; Nick Abel; William C. Clark; Per Olsson; D. Mark Stafford Smith; Brian Walker; Oran R. Young; Fikret Berkes; Reinette Biggs; J. Morgan Grove; Rosamond L. Naylor; Evelyn Pinkerton; Will Steffen; Frederick J. Swanson

Ecosystem stewardship is an action-oriented framework intended to foster the social-ecological sustainability of a rapidly changing planet. Recent developments identify three strategies that make optimal use of current understanding in an environment of inevitable uncertainty and abrupt change: reducing the magnitude of, and exposure and sensitivity to, known stresses; focusing on proactive policies that shape change; and avoiding or escaping unsustainable social-ecological traps. As we discuss here, all social-ecological systems are vulnerable to recent and projected changes but have sources of adaptive capacity and resilience that can sustain ecosystem services and human well-being through active ecosystem stewardship.


The Anthropocene Review | 2015

The trajectory of the Anthropocene: The Great Acceleration

Will Steffen; Wendy J. Broadgate; Lisa Deutsch; Owen Gaffney; Cornelia Ludwig

The ‘Great Acceleration’ graphs, originally published in 2004 to show socio-economic and Earth System trends from 1750 to 2000, have now been updated to 2010. In the graphs of socio-economic trends, where the data permit, the activity of the wealthy (OECD) countries, those countries with emerging economies, and the rest of the world have now been differentiated. The dominant feature of the socio-economic trends is that the economic activity of the human enterprise continues to grow at a rapid rate. However, the differentiated graphs clearly show that strong equity issues are masked by considering global aggregates only. Most of the population growth since 1950 has been in the non-OECD world but the world’s economy (GDP), and hence consumption, is still strongly dominated by the OECD world. The Earth System indicators, in general, continued their long-term, post-industrial rise, although a few, such as atmospheric methane concentration and stratospheric ozone loss, showed a slowing or apparent stabilisation over the past decade. The post-1950 acceleration in the Earth System indicators remains clear. Only beyond the mid-20th century is there clear evidence for fundamental shifts in the state and functioning of the Earth System that are beyond the range of variability of the Holocene and driven by human activities. Thus, of all the candidates for a start date for the Anthropocene, the beginning of the Great Acceleration is by far the most convincing from an Earth System science perspective.


PubMed | 2010

The new world of the Anthropocene.

Jan Zalasiewicz; Mark Williams; Will Steffen; Paul J. Crutzen

The Anthropocene, following the lost world of the Holocene, holds challenges for both science and society.


AMBIO: A Journal of the Human Environment | 2011

Reconnecting to the Biosphere

Carl Folke; Åsa Jansson; Johan Rockström; Per Olsson; Stephen R. Carpenter; F. Stuart Chapin; Anne-Sophie Crépin; Gretchen C. Daily; Kjell Danell; Jonas Ebbesson; Thomas Elmqvist; Victor Galaz; Fredrik Moberg; Måns Nilsson; Henrik Österblom; Elinor Ostrom; Åsa Persson; Garry D. Peterson; Stephen Polasky; Will Steffen; Brian Walker; Frances Westley

Humanity has emerged as a major force in the operation of the biosphere, with a significant imprint on the Earth System, challenging social–ecological resilience. This new situation calls for a fundamental shift in perspectives, world views, and institutions. Human development and progress must be reconnected to the capacity of the biosphere and essential ecosystem services to be sustained. Governance challenges include a highly interconnected and faster world, cascading social–ecological interactions and planetary boundaries that create vulnerabilities but also opportunities for social–ecological change and transformation. Tipping points and thresholds highlight the importance of understanding and managing resilience. New modes of flexible governance are emerging. A central challenge is to reconnect these efforts to the changing preconditions for societal development as active stewards of the Earth System. We suggest that the Millennium Development Goals need to be reframed in such a planetary stewardship context combined with a call for a new social contract on global sustainability. The ongoing mind shift in human relations with Earth and its boundaries provides exciting opportunities for societal development in collaboration with the biosphere—a global sustainability agenda for humanity.

Collaboration


Dive into the Will Steffen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin N. Waters

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Summerhayes

Scott Polar Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge