Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Willem Norde is active.

Publication


Featured researches published by Willem Norde.


Surface Science Reports | 2002

Electric double layer interactions in bacterial adhesion to surfaces

Albert T. Poortinga; Rolf Bos; Willem Norde; Henk J. Busscher

The DLVO (Derjaguin, Landau, Verwey, Overbeek) theory was originally developed to describe interactions between non-biological lyophobic colloids such as polystyrene particles, but is also used to describe bacterial adhesion to surfaces. Despite the differences between the surface of bacteria and that of non-biological particles, DLVO-descriptions of bacterial adhesion have nearly always treated bacteria as if they were non-biological particles and consequently in many cases these descriptions have failed to describe bacterial adhesion adequately. This review summarizes recent advances in colloid and surface science regarding the electrokinetic characterization of biological colloids, most notably bacteria, and their electric double layer interactions with surfaces


Advances in Colloid and Interface Science | 2003

Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties

Edwin Peter Kennedy Currie; Willem Norde; M.A. Cohen Stuart

In this review the grafting of polymer chains to solid supports or interfaces and the subsequent impact on colloidal properties is examined. We start by examining theoretical models for densely grafted polymers (brushes), experimental techniques for their preparation and the properties of the ensuing structures. Our aim is to present a broad overview of the state of the art in this field, rather than an in-depth study. In the second section the interactions of surfaces with tethered polymers with the surrounding environment and the impact on colloidal properties are considered. Various theoretical models for such interactions are discussed. We then review the properties of colloids with tethered polymer chains, interactions between planar brushes and nanocolloids, interactions between brushes and biocolloids and the impact of grafted polymers on wetting properties of surfaces, using the ideas presented in the first section. The review closes with an outlook to possible new directions of research.


Microbiology | 2008

Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces.

Niels P. Boks; Willem Norde; Henny C. van der Mei; Henk J. Busscher

Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F(prev)) and to detach adhering bacteria (F(det)) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the following three hypotheses. 1. A strong hydrodynamic shear force to prevent adhesion relates to a strong hydrodynamic shear force to detach an adhering organism. 2. A weak hydrodynamic shear force to detach adhering bacteria implies that more bacteria will be stimulated to detach by passing an air-liquid interface (an air bubble) through the flow chamber. 3. DLVO (Derjaguin, Landau, Verwey, Overbeek) interactions determine the characteristic hydrodynamic shear forces to prevent adhesion and to detach adhering micro-organisms as well as the detachment induced by a passing air-liquid interface. F(prev) varied from 0.03 to 0.70 pN, while F(det) varied from 0.31 to over 19.64 pN, suggesting that after initial contact, strengthening of the bond occurs. Generally, it was more difficult to detach bacteria from DDS-coated glass than from hydrophilic glass, which was confirmed by air bubble detachment studies. Calculated attractive forces based on the DLVO theory (F(DLVO)) towards the secondary interaction minimum were higher on glass than on DDS-coated glass. In general, all three hypotheses had to be rejected, showing that it is important to distinguish between forces acting parallel (hydrodynamic shear) and perpendicular (DLVO, air-liquid interface passages) to the substratum surface.


Biomaterials | 2008

Bacterial adhesion and growth on a polymer brush-coating

M. Reza Nejadnik; Henny C. van der Mei; Willem Norde; Henk J. Busscher

Biomaterials-related infections pose serious problems in implant surgery, despite the development of non-adhesive coatings. Non-adhesive coatings, like polymer brush-coatings, have so far only been investigated with respect to preventing initial bacterial adhesion, but never with respect to effects on kinetics of bacterial growth. Here, we compare adhesion and 20 h growth of three bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa) on pristine and brush-coated silicone rubber in a parallel plate flow chamber. Brush-coatings were made using a tri-block copolymer of polyethylene oxide (PEO) and polypropylene oxide (PPO). Brush-coatings prevented adhesion of staphylococci to below 5 x 10(5)cm(-2) after 30 min, which is a 10-fold reduction compared to pristine silicone rubber. Biofilms grew on both brush-coated and pristine silicone rubber, while the viability of biofilms on brush-coatings was higher than on pristine silicone rubber. However, biofilms on brush-coatings developed more slowly and detached almost fully by high fluid shear. Brush-coating remained non-adhesive after S. epidermidis biofilm formation and subsequent removal whereas a part of its functionality was lost after removal of S. aureus biofilms. Adhesion, growth and detachment of P. aeruginosa were not significantly different on brush-coatings as compared with pristine silicone rubber, although here too the viability of biofilms on brush-coatings was higher. We conclude that polymer brush-coatings strongly reduce initial adhesion of staphylococci and delay their biofilm growth. In addition, biofilms on brush-coatings are more viable and easily removed by the application of fluid shear.


Analytical Chemistry | 2009

Label-Free and Multiplex Detection of Antibiotic Residues in Milk Using Imaging Surface Plasmon Resonance-Based Immunosensor

Sabina Rebe Raz; Maria G.E.G. Bremer; Willem Haasnoot; Willem Norde

Monitoring of antimicrobial drug residues in foods relies greatly on the availability of adequate analytical techniques. Currently, there is a need for a high-throughput screening method with a broad-spectrum detection range. This paper describes the development of a microarray biosensor, based on an imaging surface plasmon resonance (iSPR) platform, for quantitative and simultaneous immunodetection of different antibiotic residues in milk. Model compounds from four major antibiotic families: aminoglycosides (Neomycin, Gentamicin, Kanamycin, and Streptomycin), sulfonamides (Sulfamethazine), fenicols (Chloramphenicol), and fluoroquinolones (Enrofloxacin) were detected using a single sensor chip. By multiplexing seven immunoassays in a competitive format, we were able to measure all the target compounds at parts per billion (ppb) levels in buffer and in 10x-diluted milk. The assays for Neomycin, Kanamycin, Streptomycin, Enrofloxacin, and Sulfamethazine were sensitive enough for milk control at maximum residue levels as established in the European Union. The overall performance of the biosensor was determined to be comparable to that of conventional four-channel surface plasmon resonance (SPR)-based biosensors, in terms of assay sensitivity and robustness. Combining the advantages of a SPR sensor and a microarray, utilization of the biosensor described here offers a promising alternative to the existing methods and is highly relevant for multianalyte food profiling.


Biomaterials | 2011

Pluronic-lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating

Agnieszka K. Muszanska; Henk J. Busscher; Andreas Herrmann; Henny C. van der Mei; Willem Norde

This paper describes the preparation and characterization of polymer-protein conjugates composed of a synthetic triblock copolymer with a central polypropylene oxide (PPO) block and two terminal polyethylene oxide (PEO) segments, Pluronic F-127, and the antibacterial enzyme lysozyme attached to the telechelic groups of the PEO chains. Covalent conjugation of lysozyme proceeded via reductive amination of aldehyde functionalized PEO blocks (CHO-Pluronic) and the amine groups of the lysine residues in the protein. SDS-PAGE gel electrophoresis together with MALDI-TOF mass spectrometry analysis revealed formation of conjugates of one or two lysozyme molecules per Pluronic polymer chain. The conjugated lysozyme showed antibacterial activity towards Bacillus subtilis. Analysis with a quartz crystal microbalance with dissipation revealed that Pluronic-lysozyme conjugates adsorb in a brush conformation on a hydrophobic gold-coated quartz surface. X-ray photoelectron spectroscopy indicated surface coverage of 32% by lysozyme when adsorbed from a mixture of unconjugated Pluronic and Pluronic-lysozyme conjugate (ratio 99:1) and of 47% after adsorption of 100% Pluronic-lysozyme conjugates. Thus, bifunctional brushes were created, possessing both anti-adhesive activity due to the polymer brush, combined with the antibacterial activity of lysozyme. The coating having a lower degree of lysozyme coverage proved to be more bactericidal.


Journal of Biomaterials Science-polymer Edition | 2003

Characterization of poly(ethylene oxide) brushes on glass surfaces and adhesion of Staphylococcus epidermidis

Hans J. Kaper; Henk J. Busscher; Willem Norde

Poly(ethylene oxide) brushes have been covalently bound to glass surfaces and their presence was demonstrated by an increase in water contact angles from fully wettable on glass to advancing contact angles of 54°, with a hysteresis of 32°. In addition, electrophoretic mobilities of glass and brush-coated glass were determined using streaming potential measurements. The dependence of the electrophoretic mobilities on the ionic strength was analyzed in terms of a soft-layer model, yielding an electrophoretic softness and fixed charge density of the layer. Brush-coated glass could be distinguished from glass by a 2-3-fold decrease in fixed charge density, while both surfaces were about equally soft. Adhesion of Staphylococcus epidermidis HBH276 to glass in a parallel plate flow chamber was extremely high and after 4 h, 19.0 × 106 bacteria were adhering per cm2. In contrast, the organisms did not adhere to brush-coated glass, with numbers below the detection limit, i.e. 0.1 × 106 per cm2. These results attest to the great potential of polymer brushes in preventing bacterial adhesion to surfaces.


Langmuir | 2009

Adsorption of Pluronic F-127 on Surfaces with Different Hydrophobicities Probed by Quartz Crystal Microbalance with Dissipation

M. Reza Nejadnik; Adam L. J. Olsson; Prashant K. Sharma; Henny C. van der Mei; Willem Norde; Henk J. Busscher

Triblock copolymers of polyethylene oxide (PEO) and polypropylene oxide (PPO), that is, PEOn-PPOm-PEOn, better known as Pluronic can adsorb to surfaces in either a pancake or a brushlike configuration. The brushlike configuration is advantageous in numerous applications, since it constitutes a surface repellent to proteins and microorganisms. The conformation of the adsorbed Pluronic layer depends on the hydrophobicity of the substratum surface, but the hydrophobicity threshold above which a brushlike conformation is adopted is unknown. Therefore, the aim of this study is to investigate Pluronic F-127 adsorption on surfaces with different hydrophobicities using a quartz crystal microbalance with dissipation. Adsorption in a brushlike conformation occurred on surfaces with a water contact angle above 80 degrees , as inferred from the thickness, viscosity, and elasticity of the adsorbed layer. The concentration of Pluronic F-127 in solution affected only the kinetics of adsorption and not the final layer thickness or conformation of adsorbed Pluronic molecules.


Langmuir | 2008

Bond-Strengthening in Staphylococcal Adhesion to Hydrophilic and Hydrophobic Surfaces Using Atomic Force Microscopy

Niels P. Boks; Henk J. Busscher; Henny C. van der Mei; Willem Norde

Time-dependent bacterial adhesion forces of four strains of Staphylococcus epidermidis to hydrophobic and hydrophilic surfaces were investigated. Initial adhesion forces differed significantly between the two surfaces and hovered around -0.4 nN. No unambiguous effect of substratum surface hydrophobicity on initial adhesion forces for the four different S. epidermidis strains was observed. Over time, strengthening of the adhesion forces was virtually absent on hydrophobic dimethyldichlorosilane (DDS)-coated glass, although in a few cases multiple adhesion peaks developed in the retract curves. Bond-strengthening on hydrophilic glass occurred within 5-35 s to maximum adhesion forces of -1.9 +/- 0.7 nN and was concurrent with the development of multiple adhesion peaks upon retract. Poisson analysis of the multiple adhesion peaks allowed separation of contributions of hydrogen bonding from other nonspecific interaction forces and revealed a force contribution of -0.8 nN for hydrogen bonding and +0.3 nN for other nonspecific interaction forces. Time-dependent bacterial adhesion forces were comparable for all four staphylococcal strains. It is concluded that, on DDS-coated glass, the hydrophobic effect causes instantaneous adhesion, while strengthening of the bonds on hydrophilic glass is dominated by noninstantaneous hydrogen bond formation.


Applied and Environmental Microbiology | 2008

Determination of the shear force at the balance between bacterial attachment and detachment in weak-adherence systems, using a flow displacement chamber.

M. Reza Nejadnik; Henny C. van der Mei; Henk J. Busscher; Willem Norde

ABSTRACT We introduce a procedure for determining shear forces at the balance between attachment and detachment of bacteria under flow. This procedure can be applied to derive adhesion forces in weak-adherence systems, such as polymer brush coatings, which are currently at the center of attention for their control of bacterial adhesion and biofilm formation.

Collaboration


Dive into the Willem Norde's collaboration.

Top Co-Authors

Avatar

Henk J. Busscher

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Henny C. van der Mei

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Yun Chen

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martien A. Cohen Stuart

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John van der Oost

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

M.A. Cohen Stuart

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge