Willem van de Veen
Swiss Institute of Allergy and Asthma Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Willem van de Veen.
The Journal of Allergy and Clinical Immunology | 2011
Mübeccel Akdis; Simone Burgler; Thomas Eiwegger; Hiroyuki Fujita; Enrique Gomez; Sven Klunker; Norbert Meyer; Liam O’Mahony; Oscar Palomares; Claudio Rhyner; Nadia Quaked; Anna Schaffartzik; Willem van de Veen; Sabine Zeller; Maya Zimmermann; Cezmi A. Akdis
Advancing our understanding of mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections could lead to effective and targeted therapies. Subsets of immune and inflammatory cells interact via ILs and IFNs; reciprocal regulation and counter balance among T(h) and regulatory T cells, as well as subsets of B cells, offer opportunities for immune interventions. Here, we review current knowledge about ILs 1 to 37 and IFN-γ. Our understanding of the effects of ILs has greatly increased since the discoveries of monocyte IL (called IL-1) and lymphocyte IL (called IL-2); more than 40 cytokines are now designated as ILs. Studies of transgenic or knockout mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided important information about IL and IFN functions. We discuss their signaling pathways, cellular sources, targets, roles in immune regulation and cellular networks, roles in allergy and asthma, and roles in defense against infections.
The Journal of Allergy and Clinical Immunology | 2013
Willem van de Veen; Barbara Stanic; Görkem Yaman; Marcin Wawrzyniak; Stefan Söllner; Deniz Akdis; Beate Rückert; Cezmi A. Akdis; Mübeccel Akdis
BACKGROUND IL-10-producing regulatory B cells suppress immune responses, and lack of these cells leads to exacerbated symptoms in mouse models of chronic inflammation, transplantation, and chronic infection. IgG4 is a blocking antibody isotype with anti-inflammatory potential that is induced in human high-dose antigen tolerance models. OBJECTIVE We sought to characterize human inducible IL-10-secreting B regulatory 1 (BR1) cells and to investigate their immunoregulatory capacity through suppression of cellular immune responses and production of anti-inflammatory immunoglobulins. METHODS Highly purified IL-10-secreting B cells were phenotypically and functionally characterized by means of whole-genome expression analysis, flow cytometry, suppression assay, and antibody production. B cells specific for the major bee venom allergen phospholipase A2 (PLA) were isolated from beekeepers who displayed tolerance to bee venom antigens and allergic patients before and after specific immunotherapy. RESULTS Human IL-10+ BR1 cells expressed high surface CD25 and CD71 and low CD73 levels. Sorting of CD73-CD25+CD71+ B cells allowed enrichment of human BR1 cells, which produced high levels of IL-10 and potently suppressed antigen-specific CD4+ T-cell proliferation. IgG4 was selectively confined to human BR1 cells. B cells specific for the major bee venom allergen PLA isolated from nonallergic beekeepers show increased expression of IL-10 and IgG4. Furthermore, the frequency of IL-10+ PLA-specific B cells increased in allergic patients receiving allergen-specific immunotherapy. CONCLUSION Our data show the characterization of IL-10+ BR1 cells and in vivo evidence for 2 essential features of allergen tolerance: the suppressive B cells and IgG4-expressing B cells that are confined to IL-10+ BR1 cells in human subjects.
The Journal of Allergy and Clinical Immunology | 2012
Mübeccel Akdis; Oscar Palomares; Willem van de Veen; Marloes van Splunter; Cezmi A. Akdis
Substantial progress in understanding mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumors, organ transplantation, chronic infections, and pregnancy is in an exciting developmental phase that might lead to a variety of targeted therapeutic approaches. Recent progress in the interaction between immune/inflammatory cell subsets through cytokines, particularly the extension of the knowledge on reciprocal regulation and counterbalance between subsets of T(H)1, T(H)2, T(H)9, T(H)17, T(H)22, T follicular helper cells and different subsets of regulatory T cells, as well as corresponding and co-orchestrating B-cell, natural killer cell, dendritic cell, and innate lymphoid cell subsets, offers new possibilities for immune intervention. Studies on new subsets confirm the important role of T cells in the instruction of tissue cells and also demonstrate the important role of feedback regulation for the polarization toward distinct T-cell subsets. T(H)17 and T(H)22 cells are 2 emerging T(H) cell subsets that link the immune response to tissue inflammation; IL-17A and IL-17F and IL-22 are their respective prototype cytokines. Although both cytokines play roles in immune defense to extracellular bacteria, IL-17 augments inflammation, whereas IL-22 plays a tissue-protective role. This review focuses on current knowledge on T(H)17 and T(H)22 cells and their role in inflammation, with special focus on the mechanisms of their generation and driving and effector cytokines, as well as their role in host defense, autoimmunity, and allergic diseases.
The Journal of Allergy and Clinical Immunology | 2015
Barbara Stanic; Willem van de Veen; Oliver F. Wirz; Beate Rückert; Hideaki Morita; Stefan Söllner; Cezmi A. Akdis; Mübeccel Akdis
BACKGROUND Distinct human IL-10-producing B-cell subsets with immunoregulatory properties have been described. However, the broader spectrum of their direct cellular targets and suppressive mechanisms has not been extensively studied, particularly in relation to direct and indirect IL-10-mediated functions. OBJECTIVE The aim of the study was to investigate the effects of IL-10 overexpression on the phenotype and immunoregulatory capacity of B cells. METHODS Primary human B cells were transfected with hIL-10, and IL-10-overexpressing B cells were characterized for cytokine and immunoglobulin production by means of specific ELISA and bead-based assays. Antigen presentation, costimulation capacity, and transcription factor signatures were analyzed by means of flow cytometry and quantitative RT-PCR. Effects of IL-10-overexpresing B cells on Toll-like receptor-triggered cytokine release from PBMCs, LPS-triggered maturation of monocyte-derived dendritic cells, and tetanus toxoid-induced PBMC proliferation were assessed in autologous cocultures. RESULTS IL-10-overexpressing B cells acquired a prominent immunoregulatory profile comprising upregulation of suppressor of cytokine signaling 3 (SOCS3), glycoprotein A repetitions predominant (GARP), the IL-2 receptor α chain (CD25), and programmed cell death 1 ligand 1 (PD-L1). Concurrently, their secretion profile was characterized by a significant reduction in levels of proinflammatory cytokines (TNF-α, IL-8, and macrophage inflammatory protein 1α) and augmented production of anti-inflammatory IL-1 receptor antagonist and vascular endothelial growth factor. Furthermore, IL-10 overexpression was associated with a decrease in costimulatory potential. IL-10-overexpressing B cells secreted less IgE and potently suppressed proinflammatory cytokines in PBMCs, maturation of monocyte-derived dendritic cells (rendering their profile to regulatory phenotype), and antigen-specific proliferation in vitro. CONCLUSION Our data demonstrate an essential role for IL-10 in inducing an immunoregulatory phenotype in B cells that exerts substantial anti-inflammatory and immunosuppressive functions.
Allergology International | 2013
Marek Jutel; Willem van de Veen; Ioana Agache; Kursat Azkur; Mübeccel Akdis; Cezmi A. Akdis
Allergen-specific immunotherapy (SIT) is the only available curative treatment of allergic diseases. Recent evidence provided a plausible explanation to its multiple mechanisms inducing both rapid desensitization and long-term allergen-specific immune tolerance, and suppression of allergic inflammation in the affected tissues. During SIT, peripheral tolerance is induced by the generation of allergen-specific regulatory T cells, which suppress proliferative and cytokine responses against the allergen of interest. Regulatory T cells are characterized by IL-10 and TGF-beta secretion and expression of important cell surface suppressive molecules such as cytotoxic T lymphocyte antigen-4 and programmed death-1 that directly or indirectly influence effector cells of allergic inflammation, such as mast cells, basophils and eosinophils. Regulatory T cells and particularly IL-10 also have an influence on B cells, suppressing IgE production and inducing the production of blocking type IgG4 antibodies. In addition, development of allergen-specific B regulatory cells that produce IL-10 and develop into IgG4 producing plasma cells represent essential players in peripheral tolerance. These findings together with the new biotechnological approaches create a platform for development of the advanced vaccines. Moreover, reliable biomarkers could be selected and validated with the intention to select the patients who will benefit most from this immune-modifying treatment. Thus, allergen-SIT could provide a complete cure for a larger number of allergic patients and novel preventive approaches need to be elaborated.
The Journal of Allergy and Clinical Immunology | 2013
Gunnur Deniz; Willem van de Veen; Mübeccel Akdis
Natural killer (NK) cells not only exert cytotoxic activity against tumor cells or infected cells but also act to regulate the function of other immune cells through secretion of cytokines and chemokines or cell contact-dependent mechanisms. NK cells are able to polarize in vitro into 2 functional distinct subsets, NK1 or NK2 cells, which are analogous to the T-cell subsets TH1 or TH2. In addition, a regulatory NK cell subset has been described that secretes IL-10, shows antigen-specific T-cell suppression, and suppresses IgE production. Although it has been demonstrated that NK cells play important roles in autoimmunity, cancer, transplantation, and pregnancy, the role of NK cells in allergy has not been extensively discussed. This review aims to discuss our understanding of NK cells and NK cell subsets in allergic inflammation and IgE regulation.
Chest | 2014
Michael B. Soyka; Willem van de Veen; David Holzmann; Mübeccel Akdis; Cezmi A. Akdis
Allergen-specific immunotherapy (AIT) was described as a therapeutic option for the treatment of allergies > 100 years ago. It is based on administration of allergen extracts and leads to the development of clinical allergen tolerance in selected patients. According to current knowledge, AIT results in the restoration of immune tolerance toward the allergen of interest. It is mainly accompanied by the induction of regulatory and suppressive subsets of T and B cells, the production of IgG4 isotype allergen-specific blocking antibodies, and decreased inflammatory responses to allergens by effector cells in inflamed tissues. Currently, AIT is mainly applied subcutaneously or sublingually and is suitable for both children and adults for pollen, pet dander, house dust mite, and venom allergies. It not only affects rhinoconjunctival symptoms but also has documented short- and long-term benefits in asthma treatment. Clinically, a fast onset of tolerance is achieved during desensitization, with a tolerable amount of side effects. The disease modification effect leads to decreased disease severity, less drug usage, prevention of future allergen sensitizations, and a long-term curative effect. Increasing safety while maintaining or even augmenting efficiency is the main goal of research for novel vaccine development and improvement of treatment schemes in AIT. This article reviews the principles of allergen-specific immune tolerance development and the effects of AIT in the clinical context.
Current Opinion in Immunology | 2017
Willem van de Veen; Oliver F. Wirz; Anna Globinska; Mübeccel Akdis
Allergen-specific immunotherapy (AIT) has been used for more than 100 years as a clinical tolerance-inducing and immune tolerance-inducing therapy for allergic diseases and represents a potentially curative method of treatment. AIT functions through multiple mechanisms including early desensitization of basophils and mast cells, regulating T-cell and B-cell responses, changing antibody isotypes, and decreasing activation, mediator release and affected tissue migration of eosinophils, basophils, and mast cells. Similar molecular and cellular mechanisms have been observed in subcutaneous AIT, sublingual AIT and peptide immunotherapy as well as natural tolerance to high doses of allergen exposure in beekeepers and cat owners.
The Journal of Allergy and Clinical Immunology | 2017
Zsolt István Komlósi; Nóra Kovács; Willem van de Veen; Anna Isabella Kirsch; Heinz B. Fahrner; Marcin Wawrzyniak; Ana Rebane; Barbara Stanic; Oscar Palomares; Beate Rückert; Günter Menz; Mübeccel Akdis; György Losonczy; Cezmi A. Akdis
Background: Type 3 innate lymphoid cells (ILC3s) are involved in maintenance of mucosal homeostasis; however, their role in immunoregulation has been unknown. Immature transitional regulatory B (itBreg) cells are innate‐like B cells with immunosuppressive properties, and the in vivo mechanisms by which they are induced have not been fully clarified. Objective: We aimed to investigate the ILC3–B‐cell interaction that probably takes place in human tonsils. Methods: ILC3s were isolated from peripheral blood and palatine tonsils, expanded, and cocultured with naive B cells. Tonsillar ILC3s and regulatory B cells were visualized with immunofluorescence histology. ILC3 frequencies were measured in tonsil tissue of allergic and nonallergic patients and in peripheral blood of allergic asthmatic patients and healthy control subjects. Results: A mutually beneficial relationship was revealed between ILC3s and B cells: ILC3s induced IL‐15 production in B cells through B cell–activating factor receptor, whereas IL‐15, a potent growth factor for ILC3s, induced CD40 ligand (CD40L) expression on circulating and tonsillar ILC3s. IL‐15–activated CD40L+ ILC3s helped B‐cell survival, proliferation, and differentiation of IL‐10–secreting, PD‐L1–expressing functional itBreg cells in a CD40L‐ and B cell–activating factor receptor–dependent manner. ILC3s and regulatory B cells were in close connection with each other in palatine tonsils. ILC3 frequency was reduced in tonsil tissue of allergic patients and in peripheral blood of allergic asthmatic patients. Conclusion: Human CD40L+ ILC3s provide innate B‐cell help and are involved in an innate immunoregulatory mechanism through induction of itBreg cell differentiation, which takes place in palatine tonsils in vivo. This mechanism, which can contribute to maintenance of immune tolerance, becomes insufficient in allergic diseases. GRAPHICAL ABSTRACT Figure. No caption available.
Current Allergy and Asthma Reports | 2018
Pattraporn Satitsuksanoa; Anna Globinska; Kirstin Jansen; Willem van de Veen; Mübeccel Akdis
Purpose of ReviewDuring the past few decades, modified allergens have been developed for use in allergen-specific immunotherapy (AIT) with the aim to improve efficacy and reduce adverse effects. This review aims to provide an overview of the different types of modified allergens, their mechanism of action and their potential for improving AIT.Recent FindingsIn-depth research in the field of allergen modifications as well as the advance of recombinant DNA technology have paved the way for improved diagnosis and research on human allergic diseases. A wide range of structurally modified allergens has been generated including allergen peptides, chemically altered allergoids, adjuvant-coupled allergens, and nanoparticle-based allergy vaccines. These modified allergens show promise for the development of AIT regimens with improved safety and long-term efficacy. Certain modifications ensure reduced IgE reactivity and retained T cell reactivity, which facilities induction of immune tolerance to the allergen. To date, multiple clinical trials have been performed using modified allergens. Promising results were obtained for the modified cat, grass and birch pollen, and house dust mite allergens.SummaryThe use of modified allergens holds promise for improving AIT efficacy and safety. There is however a need for larger clinical studies to reliably assess the added benefit for the patient of using modified allergens for AIT.