Willem van Schaik
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Willem van Schaik.
BMC Genomics | 2010
Willem van Schaik; Janetta Top; David R. Riley; Jos Boekhorst; Joyce E. P. Vrijenhoek; Claudia M. E. Schapendonk; Antoni P. A. Hendrickx; Isaac J. Nijman; Marc J. M. Bonten; Hervé Tettelin; Rob J. L. Willems
BackgroundThe Gram-positive bacterium Enterococcus faecium is an important cause of nosocomial infections in immunocompromized patients.ResultsWe present a pyrosequencing-based comparative genome analysis of seven E. faecium strains that were isolated from various sources. In the genomes of clinical isolates several antibiotic resistance genes were identified, including the vanA transposon that confers resistance to vancomycin in two strains. A functional comparison between E. faecium and the related opportunistic pathogen E. faecalis based on differences in the presence of protein families, revealed divergence in plant carbohydrate metabolic pathways and oxidative stress defense mechanisms. The E. faecium pan-genome was estimated to be essentially unlimited in size, indicating that E. faecium can efficiently acquire and incorporate exogenous DNA in its gene pool. One of the most prominent sources of genomic diversity consists of bacteriophages that have integrated in the genome. The CRISPR-Cas system, which contributes to immunity against bacteriophage infection in prokaryotes, is not present in the sequenced strains. Three sequenced isolates carry the esp gene, which is involved in urinary tract infections and biofilm formation. The esp gene is located on a large pathogenicity island (PAI), which is between 64 and 104 kb in size. Conjugation experiments showed that the entire esp PAI can be transferred horizontally and inserts in a site-specific manner.ConclusionsGenes involved in environmental persistence, colonization and virulence can easily be aquired by E. faecium. This will make the development of successful treatment strategies targeted against this organism a challenge for years to come.
Mbio | 2012
Rob J. L. Willems; Janetta Top; Willem van Schaik; Helen L. Leavis; Marc J. M. Bonten; Jukka Sirén; William P. Hanage; Jukka Corander
ABSTRACT Enterococcus faecium has recently emerged as an important multiresistant nosocomial pathogen. Defining population structure in this species is required to provide insight into the existence, distribution, and dynamics of specific multiresistant or pathogenic lineages in particular environments, like the hospital. Here, we probe the population structure of E. faecium using Bayesian-based population genetic modeling implemented in Bayesian Analysis of Population Structure (BAPS) software. The analysis involved 1,720 isolates belonging to 519 sequence types (STs) (491 for E. faecium and 28 for Enterococcus faecalis). E. faecium isolates grouped into 13 BAPS (sub)groups, but the large majority (80%) of nosocomial isolates clustered in two subgroups (2-1 and 3-3). Phylogenetic and eBURST analysis of BAPS groups 2 and 3 confirmed the existence of three separate hospital lineages (17, 18, and 78), highlighting different evolutionary trajectories for BAPS 2-1 (lineage 78) and 3-3 (lineage 17 and lineage 18) isolates. Phylogenomic analysis of 29 E. faecium isolates showed agreement between BAPS assignment of STs and their relative positions in the phylogenetic tree. Odds ratio calculation confirmed the significant association between hospital isolates with BAPS 3-3 and lineages 17, 18, and 78. Admixture analysis showed a scarce number of recombination events between the different BAPS groups. For the E. faecium hospital population, we propose an evolutionary model in which strains with a high propensity to colonize and infect hospitalized patients arise through horizontal gene transfer. Once adapted to the distinct hospital niche, this subpopulation becomes isolated, and recombination with other populations declines. IMPORTANCE Multiresistant Enterococcus faecium has become one of the most important nosocomial pathogens, causing increasing numbers of nosocomial infections worldwide. Here, we used Bayesian population genetic analysis to identify groups of related E. faecium strains and show a significant association of hospital and farm animal isolates to different genetic groups. We also found that hospital isolates could be divided into three lineages originating from sequence types (STs) 17, 18, and 78. We propose that, driven by the selective pressure in hospitals, the three hospital lineages have arisen through horizontal gene transfer, but once adapted to the distinct pathogenic niche, this population has become isolated and recombination with other populations declines. Elucidation of the population structure is a prerequisite for effective control of multiresistant E. faecium since it provides insight into the processes that have led to the progressive change of E. faecium from an innocent commensal to a multiresistant hospital-adapted pathogen. Multiresistant Enterococcus faecium has become one of the most important nosocomial pathogens, causing increasing numbers of nosocomial infections worldwide. Here, we used Bayesian population genetic analysis to identify groups of related E. faecium strains and show a significant association of hospital and farm animal isolates to different genetic groups. We also found that hospital isolates could be divided into three lineages originating from sequence types (STs) 17, 18, and 78. We propose that, driven by the selective pressure in hospitals, the three hospital lineages have arisen through horizontal gene transfer, but once adapted to the distinct pathogenic niche, this population has become isolated and recombination with other populations declines. Elucidation of the population structure is a prerequisite for effective control of multiresistant E. faecium since it provides insight into the processes that have led to the progressive change of E. faecium from an innocent commensal to a multiresistant hospital-adapted pathogen.
Future Microbiology | 2009
Rob J. L. Willems; Willem van Schaik
The Gram-positive species Enterococcus faecium has long been thought of as a harmless commensal of the mammalian GI tract. In the last two decades, however, E. faecium has become an important cause of nosocomial bacteremias. These infections are often difficult to treat owing to the resistance of E. faecium to a large number of antibiotics. In this article, we review the recent transition of E. faecium from commensal to nosocomial pathogen. We focus on population biology-based studies, which suggest that several clonal populations of E. faecium are mostly responsible for causing infections. We also discuss the role of the accessory genome of E. faecium in contributing to the infectious phenotype and examine the role that surface proteins of E. faecium may have in colonization and infection.
Mbio | 2013
François Lebreton; Willem van Schaik; Abigail Manson McGuire; Paul A. Godfrey; Allison D. Griggs; Varun Mazumdar; Jukka Corander; Lu Cheng; Sakina Saif; Qiandong Zeng; Jennifer R. Wortman; Bruce W. Birren; Rob J. L. Willems; Ashlee M. Earl; Michael S. Gilmore
ABSTRACT Enterococcus faecium, natively a gut commensal organism, emerged as a leading cause of multidrug-resistant hospital-acquired infection in the 1980s. As the living record of its adaptation to changes in habitat, we sequenced the genomes of 51 strains, isolated from various ecological environments, to understand how E. faecium emerged as a leading hospital pathogen. Because of the scale and diversity of the sampled strains, we were able to resolve the lineage responsible for epidemic, multidrug-resistant human infection from other strains and to measure the evolutionary distances between groups. We found that the epidemic hospital-adapted lineage is rapidly evolving and emerged approximately 75 years ago, concomitant with the introduction of antibiotics, from a population that included the majority of animal strains, and not from human commensal lines. We further found that the lineage that included most strains of animal origin diverged from the main human commensal line approximately 3,000 years ago, a time that corresponds to increasing urbanization of humans, development of hygienic practices, and domestication of animals, which we speculate contributed to their ecological separation. Each bifurcation was accompanied by the acquisition of new metabolic capabilities and colonization traits on mobile elements and the loss of function and genome remodeling associated with mobile element insertion and movement. As a result, diversity within the species, in terms of sequence divergence as well as gene content, spans a range usually associated with speciation. IMPORTANCE Enterococci, in particular vancomycin-resistant Enterococcus faecium, recently emerged as a leading cause of hospital-acquired infection worldwide. In this study, we examined genome sequence data to understand the bacterial adaptations that accompanied this transformation from microbes that existed for eons as members of host microbiota. We observed changes in the genomes that paralleled changes in human behavior. An initial bifurcation within the species appears to have occurred at a time that corresponds to the urbanization of humans and domestication of animals, and a more recent bifurcation parallels the introduction of antibiotics in medicine and agriculture. In response to the opportunity to fill niches associated with changes in human activity, a rapidly evolving lineage emerged, a lineage responsible for the vast majority of multidrug-resistant E. faecium infections. Enterococci, in particular vancomycin-resistant Enterococcus faecium, recently emerged as a leading cause of hospital-acquired infection worldwide. In this study, we examined genome sequence data to understand the bacterial adaptations that accompanied this transformation from microbes that existed for eons as members of host microbiota. We observed changes in the genomes that paralleled changes in human behavior. An initial bifurcation within the species appears to have occurred at a time that corresponds to the urbanization of humans and domestication of animals, and a more recent bifurcation parallels the introduction of antibiotics in medicine and agriculture. In response to the opportunity to fill niches associated with changes in human activity, a rapidly evolving lineage emerged, a lineage responsible for the vast majority of multidrug-resistant E. faecium infections.
PLOS Genetics | 2014
Mark de Been; Val F. Lanza; María de Toro; J. Scharringa; Wietske Dohmen; Yu Du; Juan Hu; Ying Lei; Ning Li; Ave Tooming-Klunderud; Dick Heederik; Ad C. Fluit; Marc J. M. Bonten; Rob J. L. Willems; Fernando de la Cruz; Willem van Schaik
Third-generation cephalosporins are a class of β-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E. coli strains from poultry to humans, as has been suggested based on traditional, low-resolution typing methods. Instead, our data suggest that cephalosporin resistance genes are mainly disseminated in animals and humans via distinct plasmids.
Current Opinion in Microbiology | 2013
Michael S. Gilmore; François Lebreton; Willem van Schaik
The enterococci evolved over eons as highly adapted members of gastrointestinal consortia of a wide variety of hosts, but for reasons that are not entirely clear, emerged in the 1970s as leading causes of multidrug resistant hospital infection. Hospital-adapted pathogenic isolates are characterized by the presence of multiple mobile elements conferring antibiotic resistance, as well as pathogenicity islands, capsule loci and other variable traits. Enterococci may have been primed to emerge among the vanguard of antibiotic resistant strains because of their occurrence in the GI tracts of insects and simple organisms living and feeding on organic matter that is colonized by antibiotic resistant, antibiotic producing micro-organisms. In response to the opportunity to inhabit a new niche--the antibiotic treated hospital patient--the enterococcal genome is evolving in a pattern characteristic of other bacteria that have emerged as pathogens because of opportunities stemming from anthropogenic change.
Trends in Microbiology | 2009
Antoni P. A. Hendrickx; Rob J. L. Willems; Marc J. M. Bonten; Willem van Schaik
Enterococci have become an important cause of nosocomial infections since the late 1980s. Several surface proteins have been implicated in contributing to infections caused by Enterococcus faecalis and Enterococcus faecium. Understanding the in vivo function of enterococcal surface proteins, particularly their role in directing interactions with the host during infection, is essential to explain the success of enterococci as nosocomial pathogens. Here we review current knowledge of enterococcal LPxTG surface proteins, including aggregation substance, enterococcal surface protein, three collagen-binding microbial surface components that recognize adhesive matrix molecules (Ace, Acm, Scm) and pili (Ebp, PilA and PilB), their interactions with host molecules and their role in pathogenicity and biofilm development.
Journal of Bacteriology | 2004
Willem van Schaik; Marcel H. Tempelaars; Jeroen A. Wouters; Willem M. de Vos; Tjakko Abee
A gene cluster encoding the alternative sigma factor sigma(B), three predicted regulators of sigma(B) (RsbV, RsbW, and RsbY), and one protein whose function is not known (Orf4) was identified in the genome sequence of the food pathogen Bacillus cereus ATCC 14579. Western blotting with polyclonal antibodies raised against sigma(B) revealed that there was 20.1-fold activation of sigma(B) after a heat shock from 30 to 42 degrees C. Osmotic upshock and ethanol exposure also upregulated sigma(B), albeit less than a heat shock. When the intracellular ATP concentration was decreased by exposure to carbonyl cyanide m-chlorophenylhydrazone (CCCP), only limited increases in sigma(B) levels were observed, revealing that stress due to ATP depletion is not an important factor in sigma(B) activation in B. cereus. Analysis of transcription of the sigB operon by Northern blotting and primer extension revealed the presence of a sigma(B)-dependent promoter upstream of the first open reading frame (rsbV) of the sigB operon, indicating that transcription of sigB is autoregulated. A second sigma(B)-dependent promoter was identified upstream of the last open reading frame (orf4) of the sigB operon. Production of virulence factors and the nonhemolytic enterotoxin Nhe in a sigB null mutant was the same as in the parent strain. However, sigma(B) was found to play a role in the protective heat shock response of B. cereus. The sigB null mutant was less protected against the lethal temperature of 50 degrees C by a preadaptation to 42 degrees C than the parent strain was, resulting in a more-than-100-fold-reduced survival of the mutant after 40 min at 50 degrees C.
Infection and Immunity | 2009
Willem van Schaik; Alice Château; Marie-Agnès Dillies; Jean-Yves Coppée; Abraham L. Sonenshein; Agnès Fouet
ABSTRACT In gram-positive bacteria, CodY is an important regulator of genes whose expression changes upon nutrient limitation and acts as a repressor of virulence gene expression in some pathogenic species. Here, we report the role of CodY in Bacillus anthracis, the etiologic agent of anthrax. Disruption of codY completely abolished virulence in a toxinogenic, noncapsulated strain, indicating that the activity of CodY is required for full virulence of B. anthracis. Global transcriptome analysis of a codY mutant and the parental strain revealed extensive differences. These differences could reflect direct control for some genes, as suggested by the presence of CodY binding sequences in their promoter regions, or indirect effects via the CodY-dependent control of other regulatory proteins or metabolic rearrangements in the codY mutant strain. The differences included reduced expression of the anthrax toxin genes in the mutant strain, which was confirmed by lacZ reporter fusions and immunoblotting. The accumulation of the global virulence regulator AtxA protein was strongly reduced in the mutant strain. However, in agreement with the microarray data, expression of atxA, as measured using an atxA-lacZ transcriptional fusion and by assaying atxA mRNA, was not significantly affected in the codY mutant. An atxA-lacZ translational fusion was also unaffected. Overexpression of atxA restored toxin component synthesis in the codY mutant strain. These results suggest that CodY controls toxin gene expression by regulating AtxA accumulation posttranslationally.
International Journal of Medical Microbiology | 2013
Guido Werner; Teresa M. Coque; Charles M.A.P. Franz; Elisabeth Grohmann; Kristin Hegstad; Lars Bogø Jensen; Willem van Schaik; Keith E. Weaver
Enterococci have been recognized as important hospital-acquired pathogens in recent years, and isolates of E. faecalis and E. faecium are the third- to fourth-most prevalent nosocomial pathogen worldwide. Acquired resistances, especially against penicilin/ampicillin, aminoglycosides (high-level) and glycopeptides are therapeutically important and reported in increasing numbers. On the other hand, isolates of E. faecalis and E. faecium are commensals of the intestines of humans, many vertebrate and invertebrate animals and may also constitute an active part of the plant flora. Certain enterococcal isolates are used as starter cultures or supplements in food fermentation and food preservation. Due to their preferred intestinal habitat, their wide occurrence, robustness and ease of cultivation, enterococci are used as indicators for fecal pollution assessing hygiene standards for fresh- and bathing water and they serve as important key indicator bacteria for various veterinary and human resistance surveillance systems. Enterococci are widely prevalent and genetically capable of acquiring, conserving and disseminating genetic traits including resistance determinants among enterococci and related Gram-positive bacteria. In the present review we aimed at summarizing recent advances in the current understanding of the population biology of enterococci, the role mobile genetic elements including plasmids play in shaping the population structure and spreading resistance. We explain how these elements could be classified and discuss mechanisms of plasmid transfer and regulation and the role and cross-talk of enterococcal isolates from food and food animals to humans.