Willemijn A. van Dop
Leiden University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Willemijn A. van Dop.
Gastroenterology | 2008
Willemijn A. van Dop; Anja Uhmann; Mark Wijgerde; Esther Sleddens–Linkels; Jarom Heijmans; G. Johan A. Offerhaus; Marius A. van den Bergh Weerman; Guy E. Boeckxstaens; Daan W. Hommes; James C. Hardwick; Heidi Hahn; Gijs R. van den Brink
BACKGROUND & AIMS The intestinal epithelium is a homeostatic system in which differentiated cells are in dynamic equilibrium with rapidly cycling precursor cells. Wnt signaling regulates intestinal epithelial precursor cell fate and proliferation. Homeostatic systems exist by virtue of negative feedback loops, and we have previously identified the Hedgehog (Hh) pathway as a potential negative feedback signal in the colonic epithelium. Indian hedgehog (Ihh) is produced by the differentiated enterocytes and negatively regulates Wnt signaling in intestinal precursor cells. We studied the role of members of the Hh signaling family in the intestine using a conditional genetic approach. METHODS We inactivated the Hh receptor Patched1 (Ptch1) in adult mice, resulting in constitutive activation of the Hh signaling pathway. Effects on colonic mucosal homeostasis were examined. Colon tissues were examined by immunohistochemistry, in situ hybridization, transmission electron microscopy, and real-time polymerase chain reaction. RESULTS Ihh but not Sonic hedgehog (Shh) was expressed in colonic epithelium. Expression of Ptch1 and Gli1 was restricted to the mesenchyme. Constitutive activation of Hh signaling resulted in accumulation of myofibroblasts and colonic crypt hypoplasia. A reduction in the number of epithelial precursor cells was observed with premature development into the enterocyte lineage and inhibition of Wnt signaling. Activation of Hh signaling resulted in induction of the expression of bone morphogenetic proteins (Bmp) and increased Bmp signaling in the epithelium. CONCLUSIONS Hh signaling acts in a negative feedback loop from differentiated cells via the mesenchyme to the colonic epithelial precursor cell compartment in the adult mouse.
Gastroenterology | 2010
Willemijn A. van Dop; Jarom Heijmans; Nikè V. J. A. Büller; Susanne A. Snoek; Sanne L. Rosekrans; Elisabeth A. Wassenberg; Marius A. van den Bergh Weerman; Beate Lanske; Alan Richard Clarke; Douglas J. Winton; Mark Wijgerde; G. Johan A. Offerhaus; Daan W. Hommes; James C. Hardwick; Wouter J. de Jonge; I. Biemond; Gijs R. van den Brink
BACKGROUND & AIMS Indian Hedgehog (Ihh) is expressed by the differentiated epithelial cells of the small intestine and signals to the mesenchyme where it induces unidentified factors that negatively regulate intestinal epithelial precursor cell fate. Recently, genetic variants in the Hh pathway have been linked to the development of inflammatory bowel disease. METHODS We deleted Ihh from the small intestinal epithelium in adult mice using Cyp1a1-CreIhh(fl/fl) conditional Ihh mutant mice. Intestines were examined by immunohistochemistry, in situ hybridization, and real-time polymerase chain reaction. RESULTS Deletion of Ihh from the intestinal epithelium initially resulted in a proliferative response of the intestinal epithelium with lengthening and fissioning of crypts and increased Wnt signaling. The epithelial proliferative response was associated with loss of bone morphogenetic protein and Activin signaling from the epithelium of the villus and crypts, respectively. At the same stage we observed a substantial influx of fibroblasts and macrophages into the villus core with increased mesenchymal transforming growth factor-β signaling and deposition of extracellular matrix proteins. Prolonged loss of Ihh resulted in progressive leukocyte infiltration of the crypt area, blunting and loss of villi, and the development of intestinal fibrosis. CONCLUSIONS Loss of Ihh initiates several events that are characteristic of an intestinal wound repair response. Prolonged loss resulted in progressive inflammation, mucosal damage, and the development of intestinal fibrosis. Ihh is a signal derived from the superficial epithelial cells that may act as a critical indicator of epithelial integrity.
Gastroenterology | 2013
Penelope Pelczar; Arne Zibat; Willemijn A. van Dop; Jarom Heijmans; Annalen Bleckmann; Wolfgang Gruber; Frauke Nitzki; Anja Uhmann; Maria V. Guijarro; Eva Hernando; Kai Dittmann; Jürgen Wienands; Ralf Dressel; Leszek Wojnowski; Claudia Binder; Takahiro Taguchi; Tim Beissbarth; Pancras C.W. Hogendoorn; Cristina R. Antonescu; Brian P. Rubin; Walter Schulz–Schaeffer; Fritz Aberger; Gijs R. van den Brink; Heidi Hahn
BACKGROUND & AIMS A fraction of gastrointestinal stromal tumor (GIST) cells overexpress the platelet-derived growth factor receptor (PDGFR)A, although most overexpress KIT. It is not known if this is because these receptor tyrosine kinases have complementary oncogenic potential, or because of heterogeneity in the cellular origin of GIST. Little also is known about why Hedgehog (HH) signaling is activated in some GIST. HH binds to and inactivates the receptor protein patched homolog (PTCH). METHODS Ptch was conditionally inactivated in mice (to achieve constitutive HH signaling) using a Cre recombinase regulated by the lysozyme M promoter. Cre-expressing cells were traced using R26R-LacZ reporter mice. Tumors were characterized by in situ hybridization, immunohistochemistry, immunoblot, and quantitative reverse-transcriptase polymerase chain reaction analyses. Cell transformation was assessed by soft agar assay. RESULTS Loss of Ptch from lysozyme M-expressing cells resulted in the development of tumors of GIST-like localization and histology; these were reduced when mice were given imatinib, a drug that targets KIT and PDGFRA. The Hh signaling pathway was activated in the tumor cells, and Pdgfrα, but not Kit, was overexpressed and activated. Lineage tracing revealed that Cre-expressing intestinal cells were Kit-negative. These cells sometimes expressed Pdgfrα and were located near Kit-positive interstitial cells of Cajal. In contrast to KIT, activation of PDGFRA increased anchorage-independent proliferation and was required for tumor formation in mice by cells with activated HH signaling. CONCLUSIONS Inactivation of Ptch in mice leads to formation of GIST-like tumors that express Pdgfrα, but not Kit. Activation of Pdgfrα signaling appears to facilitate tumorigenesis.
Gastroenterology | 2015
Nikè V. J. A. Büller; Sanne Rosekrans; Ciara Metcalfe; Jarom Heijmans; Willemijn A. van Dop; Evelyn Fessler; Marnix Jansen; Christina P. Ahn; Jacqueline L. M. Vermeulen; B. Florien Westendorp; Els C. Robanus-Maandag; G. Johan A. Offerhaus; Jan Paul Medema; Geert D’Haens; Manon E. Wildenberg; Frederic J. de Sauvage; Vanesa Muncan; Gijs R. van den Brink
BACKGROUND & AIMS Indian hedgehog (IHH) is an epithelial-derived signal in the intestinal stroma, inducing factors that restrict epithelial proliferation and suppress activation of the immune system. In addition to these rapid effects of IHH signaling, IHH is required to maintain a stromal phenotype in which myofibroblasts and smooth muscle cells predominate. We investigated the role of IHH signaling during development of intestinal neoplasia in mice. METHODS Glioma-associated oncogene (Gli1)-CreERT2 and Patched (Ptch)-lacZ reporter mice were crossed with Apc(Min) mice to generate Gli1CreERT2-Rosa26-ZSGreen-Apc(Min) and Ptch-lacZ-Apc(Min) mice, which were used to identify hedgehog-responsive cells. Cyp1a1Cre-Apc (Apc(HET)) mice, which develop adenomas after administration of β-naphthoflavone, were crossed with mice with conditional disruption of Ihh in the small intestine epithelium. Apc(Min) mice were crossed with mice in which sonic hedgehog (SHH) was overexpressed specifically in the intestinal epithelium. Intestinal tissues were collected and analyzed histologically and by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction. We also analyzed levels of IHH messenger RNA and expression of IHH gene targets in intestinal tissues from patients with familial adenomatous polyposis (n = 18) or sessile serrated adenomas (n = 15) and normal colonic tissue from control patients (n = 12). RESULTS Expression of IHH messenger RNA and its targets were increased in intestinal adenomas from patients and mice compared with control colon tissues. In mice, IHH signaling was exclusively paracrine, from the epithelium to the stroma. Loss of IHH from Apc(HET) mice almost completely blocked adenoma development, and overexpression of SHH increased the number and size of adenomas that developed. Loss of IHH from Apc(HET) mice changed the composition of the adenoma stroma; cells that expressed α-smooth muscle actin or desmin were lost, along with expression of cyclooxygenase-2, and the number of vimentin-positive cells increased. CONCLUSIONS Apc mutant epithelial cells secrete IHH to maintain an intestinal stromal phenotype that is required for adenoma development in mice.
Gut | 2012
Sanne Rosekrans; Willemijn A. van Dop; Anja Uhmann; Viljar Jaks; Johan Offerhaus; Marius A. van den Bergh Weerman; Jarom Heijmans; James C. Hardwick; Daniel W. Hommes; Rune Toftgârd; Heidi Hahn; Gijs R. van den Brink
Objective In the intestine Hedgehog (Hh) signalling is directed from epithelium to mesenchyme and negatively regulates epithelial precursor cell fate. The role of Hh signalling in the oesophagus has not been studied in vivo. Here the authors examined the role of Hh signalling in epithelial homeostasis of oesophagus. Design The authors used transgenic mice in which the Hh receptor Patched1 (Ptch1) could be conditionally inactivated in a body-wide manner and mice in which Gli1 could be induced specifically in the epithelium of the skin and oesophagus. Effects on epithelial homeostasis of the oesophagus were examined using immunohistochemistry, in situ hybridisation, transmission electron microscopy and real-time PCR. Hh signalling was examined in patients with oesophageal squamous cell carcinoma (SCC) by quantitative real-time PCR. Results Sonic Hh is signalled in an autocrine manner in the basal layer of the oesophagus. Activation of Hh signalling resulted in an expansion of the epithelial precursor cell compartment and failure of epithelial maturation and migration. Levels of Hh targets GLI1, HHIP and PTCH1 were increased in SCC compared with normal tissue from the same patients. Conclusion Here the authors find that Hh signalling positively regulates the precursor cell compartment in the oesophageal epithelium in an autocrine manner. Since Hh signalling targets precursor cells in the oesophageal epithelium and signalling is increased in SCCs, Hh signalling may be involved in oesophageal SCC formation.
Cellular and molecular gastroenterology and hepatology | 2018
B. Florien Westendorp; Nikè V. J. A. Büller; Olga N. Karpus; Willemijn A. van Dop; Jan Koster; Rogier Versteeg; Pim J. Koelink; Clinton Y. Snel; Sander Meisner; Joris J. T. H. Roelofs; Anja Uhmann; Emiel Ver Loren van Themaat; Jarom Heijmans; Heidi Hahn; Vanesa Muncan; Manon E. Wildenberg; Gijs R. van den Brink
Background & Aims Upon intestinal epithelial damage a complex wound healing response is initiated to restore epithelial integrity and defend against pathogenic invasion. Epithelium-derived Indian Hedgehog (Ihh) functions as a critical sensor in this process. Signaling occurs in a paracrine manner because the receptor for Ihh is expressed only in the mesenchyme, but the exact Hedgehog target cell has remained elusive. The aim of this study was to elucidate further the nature of this target cell in the context of intestinal inflammation. Methods Hedgehog activity was modulated genetically in both cell type–specific and body-wide models and the resulting animals were analyzed for gene expression profiles and sensitivity for dextran sodium sulfate (DSS) colitis. To characterize the Hedgehog target cell, Gli1-CreERT2-Rosa26-ZsGreen animals were generated, which express ZsGreen in all Hedgehog-responsive cells. These cells were characterized using flow cytometry and immunofluorescence. Results Loss of Indian Hedgehog from the intestinal epithelium resulted in a rapid increase in expression of inflammation-related genes, accompanied by increased influx of immune cells. Animals with epithelium-specific deletion of Ihh or lacking the Hedgehog receptor Smoothened from Hedgehog target cells were more sensitive to DSS colitis. In contrast, specific deletion of Smoothened in the myeloid compartment did not alter the response to DSS. This suggests that Hedgehog signaling does not repress intestinal immunity through an effect on myeloid cells. Indeed, we found that Hedgehog-responsive cells expressed gp38, smooth muscle actin, and desmin, indicating a fibroblastic nature. Ihh signaling inhibited expression of C-X-C motif chemokine ligand 12 (CXCL12) in fibroblasts in vitro and in vivo, thereby impairing the recruitment of immune cells. Conclusions We show that epithelium-derived Indian Hedgehog signals exclusively to fibroblasts in the intestine. Loss of Ihh leads to a rapid immune response with up-regulation of fibroblast-derived CXCL12, and migration of immune cells into the lamina propria.
Physiology of the Gastrointestinal Tract (Fifth Edition) | 2012
Willemijn A. van Dop; Gijs R. van den Brink
The mechanisms that orchestrate the development of a multicellular organism from a single common ancestor cell have fascinated people for centuries. We are still a long way from truly understanding the robust programs that allow building of our specialized organs that regulate digestion, respiration, and hemodynamics and that guard us from invasion by other unsolicited organisms. However, in the past three decades, many of the genes that play a role in patterning our bodies have been identified. We have learned much about the mechanisms involved in development by characterizing the nature of these patterning genes and the way they work together. In this chapter, we will discuss patterning mechanisms, introduce the Hedgehog pathway and then summarize our current understanding of the role of Hedgehog signaling in development and maintenance of the gastrointestinal (GI) tract.
Immunology Letters | 2010
Willemijn A. van Dop; Stefano Marengo; Anje A. te Velde; Elisa Ciraolo; Irene Franco; Fiebo J. ten Kate; Guy E. Boeckxstaens; James C. Hardwick; Daan W. Hommes; Emilio Hirsch; Gijs R. van den Brink
Gastroenterology | 2010
Willemijn A. van Dop; Gijs R. van den Brink
Gastroenterology | 2012
Nike V. Bueller; Willemijn A. van Dop; Anja Uhmann; Emiel Ver Loren van Themaat; Jarom Heijmans; Daniel W. Hommes; Vanesa Muncan; Heidi Hahn; Gijs R. van den Brink