Willi A. Brand
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Willi A. Brand.
Rapid Communications in Mass Spectrometry | 1999
A. W. Hilkert; C. B. Douthitt; H. J. Schlüter; Willi A. Brand
Of all the elements, hydrogen has the largest naturally occurring variations in the ratio of its stable isotopes (D/H). It is for this reason that there has been a strong desire to add hydrogen to the list of elements amenable to isotope ratio monitoring gas chromatography/mass spectrometry (irm-GC/MS). In irm-GC/MS the sample is entrained in helium as the carrier gas, which is also ionized and separated in the isotope ratio mass spectrometer (IRMS). Because of the low abundance of deuterium in nature, precise and accurate on-line monitoring of D/H ratios with an IRMS requires that low energy helium ions be kept out of the m/z 3 collector, which requires the use of an energy filter. A clean mass 3 (HD(+.)) signal which is independent of a large helium load in the electron impact ion source is essential in order to reach the sensitivity required for D/H analysis of capillary GC peaks. A new IRMS system, the DELTA(plus)XL(trade mark), has been designed for high precision, high accuracy measurements of transient signals of hydrogen gas. It incorporates a retardation lens integrated into the m/z 3 Faraday cup collector. Following GC separation, the hydrogen bound in organic compounds must be quantitatively converted into H(2) gas prior to analysis in the IRMS. Quantitative conversion is achieved by high temperature conversion (TC) at temperatures >1400 degrees C. Measurements of D/H ratios of individual organic compounds in complicated natural mixtures can now be made to a precision of 2 per thousand (delta notation) or, better, with typical sample amounts of approximately 200 ng per compound. Initial applications have focused on compounds of interest to petroleum research (biomarkers and natural gas components), food and flavor control (vanillin and ethanol), and metabolic studies (fatty acids and steroids). Copyright 1999 John Wiley & Sons, Ltd.
Journal of Mass Spectrometry | 1996
Willi A. Brand
Isotope ratio monitoring following on-line combustion is a new method in gas chromatography/mass spectrometry (GC/MS) that allows the ratios of abundances of stable isotopes of elements such as carbon and nitrogen to be determined for individual compounds introduced via a gas chromatograph. It is the first combustion method that allows direct measurement of isotope ratios of individual molecular components of mixtures. Unlike traditional gas isotope ratio measurements made on pure samples, the method requires only very small samples, viz. several picolitres of the vapour. This paper reviews the principles and history of gas isotope ratio monitoring, focusing on the instrumentation used in isotope ratio monitoring GC/MS, including the combustion procedures used for atomization. Standardization methods and data manipulation techniques are described, as are applications to geochemistry, biology, medicine and other areas of science.
Pure and Applied Chemistry | 2014
Willi A. Brand; Tyler B. Coplen; Jochen Vogl; Martin Rosner; Thomas Prohaska
Abstract Since the early 1950s, the number of international measurement standards for anchoring stable isotope delta scales has mushroomed from 3 to more than 30, expanding to more than 25 chemical elements. With the development of new instrumentation, along with new and improved measurement procedures for studying naturally occurring isotopic abundance variations in natural and technical samples, the number of internationally distributed, secondary isotopic reference materials with a specified delta value has blossomed in the last six decades to more than 150 materials. More than half of these isotopic reference materials were produced for isotope-delta measurements of seven elements: H, Li, B, C, N, O, and S. The number of isotopic reference materials for other, heavier elements has grown considerably over the last decade. Nevertheless, even primary international measurement standards for isotope-delta measurements are still needed for some elements, including Mg, Fe, Te, Sb, Mo, and Ge. It is recommended that authors publish the delta values of internationally distributed, secondary isotopic reference materials that were used for anchoring their measurement results to the respective primary stable isotope scale.
Rapid Communications in Mass Spectrometry | 2009
Willi A. Brand; Tyler B. Coplen; Anita Aerts-Bijma; John Karl Böhlke; Matthias Gehre; Heike Geilmann; Manfred Gröning; Henk G. Jansen; Harro A. J. Meijer; Stanley J. Mroczkowski; Haiping Qi; Karin Soergel; Hilary Stuart-Williams; Stephan M. Weise; Roland A. Werner
Internationally distributed organic and inorganic oxygen isotopic reference materials have been calibrated by six laboratories carrying out more than 5300 measurements using a variety of high-temperature conversion techniques (HTC)a in an evaluation sponsored by the International Union of Pure and Applied Chemistry (IUPAC). To aid in the calibration of these reference materials, which span more than 125 per thousand, an artificially enriched reference water (delta(18)O of +78.91 per thousand) and two barium sulfates (one depleted and one enriched in (18)O) were prepared and calibrated relative to VSMOW2b and SLAP reference waters. These materials were used to calibrate the other isotopic reference materials in this study, which yielded: Reference material delta(18)O and estimated combined uncertainty IAEA-602 benzoic acid+71.28 +/- 0.36 per thousand USGS 35 sodium nitrate+56.81 +/- 0.31 per thousand IAEA-NO-3 potassium nitrate+25.32 +/- 0.29 per thousand IAEA-601 benzoic acid+23.14 +/- 0.19 per thousand IAEA-SO-5 barium sulfate+12.13 +/- 0.33 per thousand NBS 127 barium sulfate+8.59 +/- 0.26 per thousand VSMOW2 water 0 per thousand IAEA-600 caffeine-3.48 +/- 0.53 per thousand IAEA-SO-6 barium sulfate-11.35 +/- 0.31 per thousand USGS 34 potassium nitrate-27.78 +/- 0.37 per thousand SLAP water-55.5 per thousand The seemingly large estimated combined uncertainties arise from differences in instrumentation and methodology and difficulty in accounting for all measurement bias. They are composed of the 3-fold standard errors directly calculated from the measurements and provision for systematic errors discussed in this paper. A primary conclusion of this study is that nitrate samples analyzed for delta(18)O should be analyzed with internationally distributed isotopic nitrates, and likewise for sulfates and organics. Authors reporting relative differences of oxygen-isotope ratios (delta(18)O) of nitrates, sulfates, or organic material should explicitly state in their reports the delta(18)O values of two or more internationally distributed nitrates (USGS 34, IAEA-NO-3, and USGS 35), sulfates (IAEA-SO-5, IAEA-SO-6, and NBS 127), or organic material (IAEA-601 benzoic acid, IAEA-602 benzoic acid, and IAEA-600 caffeine), as appropriate to the material being analyzed, had these reference materials been analyzed with unknowns. This procedure ensures that readers will be able to normalize the delta(18)O values at a later time should it become necessary.The high-temperature reduction technique for analyzing delta(18)O and delta(2)H is not as widely applicable as the well-established combustion technique for carbon and nitrogen stable isotope determination. To obtain the most reliable stable isotope data, materials should be treated in an identical fashion; within the same sequence of analyses, samples should be compared with working reference materials that are as similar in nature and in isotopic composition as feasible.
Organic Geochemistry | 1994
Dawn A. Merritt; Willi A. Brand; J. M. Hayes
In trial analyses of a series of n-alkanes, precise determinations of 13C contents were based on isotopic standards introduced by five different techniques and results were compared. Specifically, organic-compound standards were coinjected with the analytes and carried through chromatography and combustion with them; or CO2 was supplied from a conventional inlet and mixed with the analyte in the ion source, or CO2 was supplied from an auxiliary mixing volume and transmitted to the source without interruption of the analyte stream. Additionally, two techniques were investigated in which the analyte stream was diverted and CO2 standards were placed on a near-zero background. All methods provided accurate results. Where applicable, methods not involving interruption of the analyte stream provided the highest performance (sigma = 0.00006 at.% 13C or 0.06% for 250 pmol C as CO2 reaching the ion source), but great care was required. Techniques involving diversion of the analyte stream were immune to interference from coeluting sample components and still provided high precision (0.0001 < or = sigma < or = 0.0002 at.% or 0.1 < or = sigma < or = 0.2%).
Isotopes in Environmental and Health Studies | 2012
Willi A. Brand; Tyler B. Coplen
Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg can be written as+15 μUr.
Pure and Applied Chemistry | 2016
Juris Meija; Tyler B. Coplen; Michael Berglund; Willi A. Brand; Paul De Bièvre; Manfred Gröning; Norman E. Holden; Johanna Irrgeher; Robert D. Loss; Thomas Walczyk; Thomas Prohaska
Abstract The biennial review of atomic-weight determinations and other cognate data has resulted in changes for the standard atomic weights of 19 elements. The standard atomic weights of four elements have been revised based on recent determinations of isotopic abundances in natural terrestrial materials: cadmium to 112.414(4) from 112.411(8), molybdenum to 95.95(1) from 95.96(2), selenium to 78.971(8) from 78.96(3), and thorium to 232.0377(4) from 232.038 06(2). The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) also revised the standard atomic weights of fifteen elements based on the 2012 Atomic Mass Evaluation: aluminium (aluminum) to 26.981 5385(7) from 26.981 5386(8), arsenic to 74.921 595(6) from 74.921 60(2), beryllium to 9.012 1831(5) from 9.012 182(3), caesium (cesium) to 132.905 451 96(6) from 132.905 4519(2), cobalt to 58.933 194(4) from 58.933 195(5), fluorine to 18.998 403 163(6) from 18.998 4032(5), gold to 196.966 569(5) from 196.966 569(4), holmium to 164.930 33(2) from 164.930 32(2), manganese to 54.938 044(3) from 54.938 045(5), niobium to 92.906 37(2) from 92.906 38(2), phosphorus to 30.973 761 998(5) from 30.973 762(2), praseodymium to 140.907 66(2) from 140.907 65(2), scandium to 44.955 908(5) from 44.955 912(6), thulium to 168.934 22(2) from 168.934 21(2), and yttrium to 88.905 84(2) from 88.905 85(2). The Commission also recommends the standard value for the natural terrestrial uranium isotope ratio, N(238U)/N(235U)=137.8(1).
New Phytologist | 2010
Giovanna Battipaglia; Veronica De Micco; Willi A. Brand; Petra Linke; Giovanna Aronne; Matthias Saurer; Paolo Cherubini
Woody species in Mediterranean ecosystems form intra-annual density fluctuations (IADFs) in tree rings in response to changes in environmental conditions, especially water availability. Dendrochronology, quantitative wood anatomy and high-resolution isotopic analysis (using a laser ablation technique) were used to characterize IADFs in Arbutus unedo shrubs grown on two sites with different water availability on the island of Elba (Italy). Our findings show that IADF characterization can provide information about the relationship between environmental factors and tree growth at the seasonal level. At the more xeric site, IADFs mainly located in the early and middle parts of the annual ring, showed a decrease in vessel size and an increase in δ(13) C as a result of drought deficit. Opposite trends were found at the more mesic site, with IADFs located at the end of the ring and associated with a lower δ(13) C. Moreover, at the first site, IADFs are induced by drought deficit, while at the second site IADFs are linked with the regrowth in the last part of the growing season triggered by favourable wet conditions. This combined approach is a promising way for dating problematic wood samples and interpreting the phenomena that trigger the formation of IADFs in the Mediterranean environment.
International Journal of Mass Spectrometry | 2003
Prosenjit Ghosh; Willi A. Brand
Stable isotope ratios of the life science elements carbon, hydrogen, oxygen and nitrogen vary slightly, but significantly in major compartments of the earth. Owing mainly to antropogenic activities including land use change and fossil fuel burning, the 13 C/ 12 C ratio of CO2 in the atmosphere has changed over the last 200 years by 1.5 parts per thousand (from about 0.0111073 to 0.0110906). In between interglacial warm periods and glacial maxima, the 18 O/ 16 O ratio of precipitation in Greenland has changed by as much as 5 parts per thousand (0.001935–0.001925). While seeming small, such changes are detectable reliably with specialised mass spectrometric techniques. The small changes reflect natural fractionation processes that have left their signature in natural archives. These enable us to investigate the climate of past times in order to understand how the Earth’s climatic system works and how it can react to external forcing. In addition, studying contemporary isotopic change of natural compartments can help to identify sources and sinks for atmospheric trace gases provided the respective isotopic signatures are large enough for measurement and have not been obscured by unknown processes. This information is vital within the framework of the Kyoto process for controlling CO2 emissions.
Pure and Applied Chemistry | 2010
Willi A. Brand; Sergey Assonov; Tyler B. Coplen
Measurements of δ(13C) determined on CO2 with an isotope-ratio mass spectrometer (IRMS) must be corrected for the amount of 17O in the CO2. For data consistency, this must be done using identical methods by different laboratories. This report aims at unifying data treatment for CO2 IRMS by proposing (i) a unified set of numerical values, and (ii) a unified correction algorithm, based on a simple, linear approximation formula. Because the oxygen of natural CO2 is derived mostly from the global water pool, it is recommended that a value of 0.528 be employed for the factor λ, which relates differences in 17O and 18O abundances. With the currently accepted N(13C)/N(12C) of 0.011 180(28) in VPDB (Vienna Peedee belemnite) reevaluation of data yields a value of 0.000 393(1) for the oxygen isotope ratio N(17O)/N(16O) of the evolved CO2. The ratio of these quantities, a ratio of isotope ratios, is essential for the 17O abundance correction: [N(17O)/N(16O)]/[N(13C)/N(12C)] = 0.035 16(8). The equation [δ(13C) ≍ 45δVPDB-CO2 + 2 17R/13R (45δVPDB-CO2 – λ46δVPDB-CO2)] closely approximates δ(13C) values with less than 0.010 ‰ deviation for normal oxygen-bearing materials and no more than 0.026 ‰ in extreme cases. Other materials containing oxygen of non-mass-dependent isotope composition require a more specific data treatment. A similar linear approximation is also suggested for δ(18O). The linear approximations are easy to implement in a data spreadsheet, and also help in generating a simplified uncertainty budget.