William A. Chutkow
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William A. Chutkow.
Diabetes | 1996
William A. Chutkow; M. Celeste Simon; Michelle M. Le Beau; Charles F. Burant
ATP-sensitive inwardly rectifying potassium channels are expressed in a variety of tissues, including heart, skeletal, and smooth muscle, and pancreatic β-cells. Physiological and pharmacological studies suggest the presence of distinct KATP channels in these tissues. Recently, the KATP channel of β-cells has been reconstituted in functional form by coexpression of SUR, the sulfonylurea-binding protein, and the inwardly rectifying K+ channel subunit, KIR6.2. In this article, we describe the isolation of cDNAs encoding SUR-like proteins from mouse, SUR2A and SUR2B. Northern blotting showed that the highest expression of the SUR2 isoforms is in the heart and skeletal muscle, with lower levels in all other tissues. By reverse transcription-polymerase chain reaction, SUR2B is ubiquitously expressed, while the apparently alternatively spliced variant, SUR2A, is expressed exclusively in heart. In situ hybridization shows that the SUR2 isoforms are expressed in the parenchyma of the heart and skeletal muscle and in the vascular structures of other tissues. Human SUR2 was localized to chromosome 12, p12.1 by fluorescent in situ hybridization. The structure of the predicted protein and expression pattern of SUR2 suggests that it is the drug-binding channel-modulating subunit of the extrapancreatic KATP channel. Differences in sequence between SUR and between SUR2 isoforms may underlie the tissue-specific pharmacology of the KATP channel.
Journal of Clinical Investigation | 2002
William A. Chutkow; Jielin Pu; Matthew T. Wheeler; Tomoyuki Wada; Jonathan C. Makielski; Charles F. Burant; Elizabeth M. McNally
K(ATP) channels couple the intracellular energy state to membrane excitability and regulate a wide array of biologic activities. K(ATP) channels contain a pore-forming inwardly rectifying potassium channel and a sulfonylurea receptor regulatory subunit (SUR1 or SUR2). To clarify the role of K(ATP) channels in vascular smooth muscle, we studied Sur2 gene-targeted mice (Sur2(-/-)) and found significantly elevated resting blood pressures and sudden death. Using in vivo monitoring, we detected transient, repeated episodes of coronary artery vasospasm in Sur2(-/-) mice. Focal narrowings in the coronary arteries were present in Sur2(-/-) mice consistent with vascular spasm. We treated Sur2(-/-) mice with a calcium channel antagonist and successfully reduced vasospastic episodes. The intermittent coronary artery vasospasm seen in Sur2(-/-) mice provides a model for the human disorder Prinzmetal variant angina and demonstrates that the SUR2 K(ATP) channel is a critical regulator of episodic vasomotor activity.
Journal of Biological Chemistry | 2006
Parth Patwari; Luke J. Higgins; William A. Chutkow; Jun Yoshioka; Richard T. Lee
The thioredoxin system plays an important role in maintaining a reducing environment in the cell. Recently, several thioredoxin binding partners have been identified and proposed to mediate aspects of redox signaling, but the significance of these interactions is unclear in part due to incomplete understanding of the mechanism for thioredoxin binding. Thioredoxin-interacting protein (Txnip) is critical for regulation of glucose metabolism, the only currently known function of which is to bind and inhibit thioredoxin. We explored the mechanism of the Txnip-thioredoxin interaction and present evidence that Txnip and thioredoxin form a stable disulfide-linked complex. We identified two Txnip cysteines that are important for thioredoxin binding and showed that this interaction is consistent with a disulfide exchange reaction between oxidized Txnip and reduced thioredoxin. These cysteines are not conserved in the broader family of arrestin domain-containing proteins, and we demonstrate that the thioredoxin-binding property of Txnip is unique. These data suggest that Txnip is a target of reduced thioredoxin and provide insight into the potential role of Txnip as a redox-sensitive signaling protein.
Journal of Biological Chemistry | 2008
William A. Chutkow; Parth Patwari; Jun Yoshioka; Richard T. Lee
Thioredoxin-interacting protein (Txnip) has been recently described as a possible link between cellular redox state and metabolism; Txnip binds thioredoxin and inhibits its disulfide reductase activity in vitro, while a naturally occurring strain of Txnip-deficient mice has hyperlipidemia, hypoglycemia, and ketosis exacerbated by fasting. We generated Txnip-null mice to investigate the role of Txnip in glucose homeostasis. Txnip-null mice were hypoglycemic, hypoinsulinemic, and had blunted glucose production following a glucagon challenge, consistent with a central liver glucose-handling defect. Glucose release from isolated Txnip-null hepatocytes was 2-fold lower than wild-type hepatocytes, whereas β-hydroxybutyrate release was increased 2-fold, supporting an intrinsic defect in hepatocyte glucose metabolism. While hepatocyte-specific gene deletion of Txnip did not alter glucose clearance compared with littermate controls, Txnip expression in the liver was required for maintaining normal fasting glycemia and glucose production. In addition, hepatic overexpression of a Txnip transgene in wild-type mice resulted in elevated serum glucose levels and decreased ketone levels. Liver homogenates from Txnip-null mice had no significant differences in the glutathione oxidation state or in the amount of available thioredoxin. However, overexpression of wild-type Txnip in Txnip-null hepatocytes rescued cellular glucose production, whereas overexpression of a C247S mutant Txnip, which does not bind thioredoxin, had no effect. These data demonstrate that Txnip is required for normal glucose homeostasis in the liver. While available thioredoxin is not changed in Txnip-null mice, the effects of Txnip on glucose homeostasis are abolished by a single cysteine mutation that inhibits binding to thioredoxin.
Journal of Biological Chemistry | 2009
Parth Patwari; William A. Chutkow; Kiersten Cummings; Valerie L. R. M. Verstraeten; Jan Lammerding; Eric R. Schreiter; Richard T. Lee
Thioredoxin-interacting protein (Txnip), originally characterized as an inhibitor of thioredoxin, is now known to be a critical regulator of glucose metabolism in vivo. Txnip is a member of the α-arrestin protein family; the α-arrestins are related to the classical β-arrestins and visual arrestins. Txnip is the only α-arrestin known to bind thioredoxin, and it is not known whether the metabolic effects of Txnip are related to its ability to bind thioredoxin or related to conserved α-arrestin function. Here we show that wild type Txnip and Txnip C247S, a Txnip mutant that does not bind thioredoxin in vitro, both inhibit glucose uptake in mature adipocytes and in primary skin fibroblasts. Furthermore, we show that Txnip C247S does not bind thioredoxin in cells, using thiol alkylation to trap the Txnip-thioredoxin complex. Because Txnip function was independent of thioredoxin binding, we tested whether inhibition of glucose uptake was conserved in the related α-arrestins Arrdc4 and Arrdc3. Both Txnip and Arrdc4 inhibited glucose uptake and lactate output, while Arrdc3 had no effect. Structure-function analysis indicated that Txnip and Arrdc4 inhibit glucose uptake independent of the C-terminal WW-domain binding motifs, recently identified as important in yeast α-arrestins. Instead, regulation of glucose uptake was intrinsic to the arrestin domains themselves. These data demonstrate that Txnip regulates cellular metabolism independent of its binding to thioredoxin and reveal the arrestin domains as crucial structural elements in metabolic functions of α-arrestin proteins.
Proceedings of the National Academy of Sciences of the United States of America | 2001
William A. Chutkow; Varman Samuel; Polly A. Hansen; Jielin Pu; Carmen R. Valdivia; Jonathan C. Makielski; Charles F. Burant
ATP-sensitive potassium channels (KATP) are involved in a diverse array of physiologic functions including protection of tissue against ischemic insult, regulation of vascular tone, and modulation of insulin secretion. To improve our understanding of the role of KATP in these processes, we used a gene-targeting strategy to generate mice with a disruption in the muscle-specific KATP regulatory subunit, SUR2. Insertional mutagenesis of the Sur2 locus generated homozygous null (Sur2−/−) mice and heterozygote (Sur2+/−) mice that are viable and phenotypically similar to their wild-type littermates to 6 weeks of age despite, respectively, half or no SUR2 mRNA expression or channel activity in skeletal muscle or heart. Sur2−/− animals had lower fasting and fed serum glucose, exhibited improved glucose tolerance during a glucose tolerance test, and demonstrated a more rapid and severe hypoglycemia after administration of insulin. Enhanced glucose use was also observed during in vivo hyperinsulinemic euglycemic clamp studies during which Sur2−/− mice required a greater glucose infusion rate to maintain a target blood glucose level. Enhanced insulin action was intrinsic to the skeletal muscle, as in vitro insulin-stimulated glucose transport was 1.5-fold greater in Sur2−/− muscle than in wild type. Thus, membrane excitability and KATP activity, to our knowledge, seem to be new components of the insulin-stimulated glucose uptake mechanism, suggesting possible future therapeutic approaches for individuals suffering from diabetes mellitus.
Diabetes | 2010
William A. Chutkow; Andreas L. Birkenfeld; Jonathan D. Brown; Hui-Young Lee; David W. Frederick; Jun Yoshioka; Parth Patwari; Romy Kursawe; Samuel W. Cushman; Jorge Plutzky; Gerald I. Shulman; Varman T. Samuel; Richard T. Lee
OBJECTIVE Thioredoxin interacting protein (Txnip), a regulator of cellular oxidative stress, is induced by hyperglycemia and inhibits glucose uptake into fat and muscle, suggesting a role for Txnip in type 2 diabetes pathogenesis. Here, we tested the hypothesis that Txnip-null (knockout) mice are protected from insulin resistance induced by a high-fat diet. RESEARCH DESIGN AND METHODS Txnip gene-deleted (knockout) mice and age-matched wild-type littermate control mice were maintained on a standard chow diet or subjected to 4 weeks of high-fat feeding. Mice were assessed for body composition, fat development, energy balance, and insulin responsiveness. Adipogenesis was measured from ex vivo fat preparations, and in mouse embryonic fibroblasts (MEFs) and 3T3-L1 preadipocytes after forced manipulation of Txnip expression. RESULTS Txnip knockout mice gained significantly more adipose mass than controls due to a primary increase in both calorie consumption and adipogenesis. Despite increased fat mass, Txnip knockout mice were markedly more insulin sensitive than controls, and augmented glucose transport was identified in both adipose and skeletal muscle. RNA interference gene-silenced preadipocytes and Txnip−/− MEFs were markedly adipogenic, whereas Txnip overexpression impaired adipocyte differentiation. As increased adipogenesis and insulin sensitivity suggested aspects of augmented peroxisome proliferator–activated receptor-γ (PPARγ) response, we investigated Txnips regulation of PPARγ function; manipulation of Txnip expression directly regulated PPARγ expression and activity. CONCLUSIONS Txnip deletion promotes adiposity in the face of high-fat caloric excess; however, loss of this α-arrestin protein simultaneously enhances insulin responsiveness in fat and skeletal muscle, revealing Txnip as a novel mediator of insulin resistance and a regulator of adipogenesis.
Journal of Biological Chemistry | 1999
William A. Chutkow; Jonathan C. Makielski; Deborah J. Nelson; Charles F. Burant; Zheng Fan
ATP-sensitive potassium channels (KATP) are implicated in a diverse array of physiological functions. Previous work has shown that alternative usage of exons 14, 39, and 40 of the muscle-specific KATP channel regulatory subunit, sur2, occurs in tissue-specific patterns. Here, we show that exon 17 of the first nucleotide binding fold of sur2 is also alternatively spliced. RNase protection demonstrates that SUR2(Δ17) predominates in skeletal muscle and gut and is also expressed in bladder, fat, heart, lung, liver, and kidney. Polymerase chain reaction and restriction digest analysis of sur2 cDNA demonstrate the existence of at least five sur2 splice variants as follows: SUR2(39), SUR2(40), SUR2(Δ17/39), SUR2(Δ17/40), and SUR2(Δ14/39). Electrophysiological recordings of excised, inside-out patches from COS cells cotransfected with Kir6.2 and the sur2 variants demonstrated that exon 17 splicing alters KATP sensitivity to ATP block by 2-fold from ≈40 to ≈90 μm for exon 17 and Δ17, respectively. Single channel kinetic analysis of SUR2(39) and SUR2(Δ17/39) demonstrated that both exhibited characteristic KATP kinetics but that SUR2(Δ17/39) exhibited longer mean burst durations and shorter mean interburst dwell times. In sum, alternative splicing of sur2 enhances the observed diversity of KATP and may contribute to tissue-specific modulation of ATP sensitivity.
Journal of Clinical Investigation | 2012
Jun Yoshioka; William A. Chutkow; Samuel Lee; Jae Bum Kim; Jie Yan; Rong Tian; Merry L. Lindsey; Edward P. Feener; Christine E. Seidman; Jonathan G. Seidman; Richard T. Lee
Classic therapeutics for ischemic heart disease are less effective in individuals with the metabolic syndrome. As the prevalence of the metabolic syndrome is increasing, better understanding of cardiac metabolism is needed to identify potential new targets for therapeutic intervention. Thioredoxin-interacting protein (Txnip) is a regulator of metabolism and an inhibitor of the antioxidant thioredoxins, but little is known about its roles in the myocardium. We examined hearts from Txnip-KO mice by polony multiplex analysis of gene expression and an independent proteomic approach; both methods indicated suppression of genes and proteins participating in mitochondrial metabolism. Consistently, Txnip-KO mitochondria were functionally and structurally altered, showing reduced oxygen consumption and ultrastructural derangements. Given the central role that mitochondria play during hypoxia, we hypothesized that Txnip deletion would enhance ischemia-reperfusion damage. Surprisingly, Txnip-KO hearts had greater recovery of cardiac function after an ischemia-reperfusion insult. Similarly, cardiomyocyte-specific Txnip deletion reduced infarct size after reversible coronary ligation. Coordinated with reduced mitochondrial function, deletion of Txnip enhanced anaerobic glycolysis. Whereas mitochondrial ATP synthesis was minimally decreased by Txnip deletion, cellular ATP content and lactate formation were higher in Txnip-KO hearts after ischemia-reperfusion injury. Pharmacologic inhibition of glycolytic metabolism completely abolished the protection afforded the heart by Txnip deficiency under hypoxic conditions. Thus, although Txnip deletion suppresses mitochondrial function, protection from myocardial ischemia is enhanced as a result of a coordinated shift to enhanced anaerobic metabolism, which provides an energy source outside of mitochondria.
Circulation Research | 2007
Jun Yoshioka; Kenichi Imahashi; Scott A. Gabel; William A. Chutkow; Aurora A. Burds; Joseph Gannon; P. Christian Schulze; Catherine MacGillivray; Robert E. London; Elizabeth Murphy; Richard T. Lee
Biomechanical overload induces cardiac hypertrophy and heart failure, and reactive oxygen species (ROS) play a role in both processes. Thioredoxin-Interacting Protein (Txnip) is encoded by a mechanically-regulated gene that controls cell growth and apoptosis in part through interaction with the endogenous dithiol antioxidant thioredoxin. Here we show that Txnip is a critical regulator of the cardiac response to pressure overload. We generated inducible cardiomyocyte-specific and systemic Txnip-null mice (Txnip-KO) using Flp/frt and Cre/loxP technologies. Compared with littermate controls, Txnip-KO hearts had attenuated cardiac hypertrophy and preserved left ventricular (LV) contractile reserve through 4 weeks of pressure overload; however, the beneficial effects were not sustained and Txnip deletion ultimately led to maladaptive LV remodeling at 8 weeks of pressure overload. Interestingly, these effects of Txnip deletion on cardiac performance were not accompanied by global changes in thioredoxin activity or ROS; instead, Txnip-KO hearts had a robust increase in myocardial glucose uptake. Thus, deletion of Txnip plays an unanticipated role in myocardial energy homeostasis rather than redox regulation. These results support the emerging concept that the function of Txnip is not as a simple thioredoxin inhibitor but as a metabolic control protein.